• 제목/요약/키워드: Modified Transverse Displacement Field

검색결과 9건 처리시간 0.023초

수정 횡변위장에 의한 강성과잉이 없는 직선 보 요소 (Locking-free Straight Beam Element by a Modified Transverse Displacement Field)

  • 이팔갑;신효철
    • 대한기계학회논문집
    • /
    • 제16권12호
    • /
    • pp.2287-2297
    • /
    • 1992
  • 본 연구에서는 먼저 곡률요소에서와 같이 Timoshenko보를 기술하는 모든 변수 들을 평형방정식과 함께 고려할 때 각 변수들에 대한 새로운 해석이 가능함을 보이고 자 한다. 이는 횡변위장을 곡률로 수정함으로써 시작되는데 수정횡변위장을 사용할 경우, 보를 기술하는 모든 변수들이 Euler보의 그것들과 형태상으로 동일하게 나타나 며 수학적으로 볼 때 간결하면서도 새로운 접근 방법을 제시해 준다. 또한 이러한 수정횡변위장을 사용할 경우 순수변위에 기초하고 있는 전통적인 구조요소의 정식화과 정과 같은 과정을 거치게 되는 잇점이 있다. 한편, 직선 보요소의 정식화 과정에는 수정횡변위장의 형상함수로서 전통적인 Hermite 보 요소의 형상함수를 도입하였는데 이는 회전각의 장이 수정횡변위장의 미분치로 주어지기 때문이다.마지막 단계로서, 수정횡변위치가 포함된 절점에서의 변위벡터와 원횡변위치가 포함된 변위벡터 사이에 존재하는 변환행렬을 찾아 내었다.

Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory

  • Arefi, M.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.145-153
    • /
    • 2019
  • Modified couple stress formulation and first order shear deformation theory are used for magneto-electro-elastic bending analysis of three-layered curved size-dependent beam subjected to mechanical, magnetic and electrical loads. The governing equations are derived using a displacement field including radial and transverse displacements of middle surface and a rotation component. Size dependency is accounted based on modified couple stress theory by employing a small scale parameter. The numerical results are presented to study the influence of small scale parameter, initial electric and magnetic potentials and opening angle on the magneto-electro-elastic bending results of curved micro beam.

Influence of the porosities on the free vibration of FGM beams

  • Hadji, L.;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • 제21권3호
    • /
    • pp.273-287
    • /
    • 2015
  • In this paper, a free vibration analysis of functionally graded beam made of porous material is presented. The material properties are supposed to vary along the thickness direction of the beam according to the rule of mixture, which is modified to approximate the material properties with the porosity phases. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Meshless formulation for shear-locking free bending elements

  • Kanok-Nukulchai, W.;Barry, W.J.;Saran-Yasoontorn, K.
    • Structural Engineering and Mechanics
    • /
    • 제11권2호
    • /
    • pp.123-132
    • /
    • 2001
  • An improved version of the Element-free Galerkin method (EFGM) is presented here for addressing the problem of transverse shear locking in shear-deformable beams with a high length over thickness ratio. Based upon Timoshenko's theory of thick beams, it has been recognized that shear locking will be completely eliminated if the rotation field is constructed to match the field of slope, given by the first derivative of displacement. This criterion is applied directly to the most commonly implemented version of EFGM. However in the numerical process to integrate strain energy, the second derivative of the standard Moving Least Square (MLS) shape functions must be evaluated, thus requiring at least a $C^1$ continuity of MLS shape functions instead of $C^0$ continuity in the conventional EFGM. Yet this hindrance is overcome effortlessly by only using at least a $C^1$ weight function. One-dimensional quartic spline weight function with $C^2$ continuity is therefore adopted for this purpose. Various numerical results in this work indicate that the modified version of the EFGM does not exhibit transverse shear locking, reduces stress oscillations, produces fast convergence, and provides a surprisingly high degree of accuracy even with coarse domain discretizations.

감차적분(減次積分) 비적합변위형(非適合變位形)을 혼합사용한 평판요소(平板要素)의 개발(開發) (Development of the Plate Element Using Combination of Reduced Integration and Nonconforming Modes)

  • 방명석;최창근
    • 대한토목학회논문집
    • /
    • 제5권2호
    • /
    • pp.19-25
    • /
    • 1985
  • 감차적분(減次積分)과 비적합변위형(非適合變位形)을 혼합사용함으로써 고도로 효율적인 새로운 평판요소가 개발되었다. 이 요소의 변위영역은 Ahmad-Irons 요소의 횡방향성분에만 비적합변위형(非適合變位形)을 추가하였고, 요소강성행열은 수정된 차수(次數)의 수치적분에 의하여 계산된다. 다른 요소들과 비교하여 NC 8-4.1과 NC 8-5.1 요소들의 월등함이 발견되었다. 이 요소들에 의한 해는 mesh가 세분됨에 따라 정확한 해에 급속히 수렴함을 알 수 있다. 또한 이 요소들은 두꺼운 펑판문제에서 부터 매우 얇은 평판문제까지 넓은 범위에 적용할 수 있음을 보여 준다.

  • PDF

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

A refined exponential shear deformation theory for free vibration of FGM beam with porosities

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E. Adda
    • Geomechanics and Engineering
    • /
    • 제9권3호
    • /
    • pp.361-372
    • /
    • 2015
  • In this paper, a refined exponential shear deformation theory for free vibration analysis of functionally graded beam with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a new displacement field based on refined shear deformation theory is implemented. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the beam without using shear correction factors. Based on the present refined shear deformation beam theory, the equations of motion are derived from Hamilton's principle. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

A computational shear displacement model for vibrational analysis of functionally graded beams with porosities

  • Atmane, Hassen Ait;Tounsi, Abdelouahed;Bernard, Fabrice;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.369-384
    • /
    • 2015
  • This work presents a free vibration analysis of functionally graded metal-ceramic (FG) beams with considering porosities that may possibly occur inside the functionally graded materials (FGMs) during their fabrication. For this purpose, a simple displacement field based on higher order shear deformation theory is implemented. The proposed theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The most interesting feature of this theory is that it accounts for a quadratic variation of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the beam without using shear correction factors. In addition, it has strong similarities with Euler-Bernoulli beam theory in some aspects such as equations of motion, boundary conditions, and stress resultant expressions. The rule of mixture is modified to describe and approximate material properties of the FG beams with porosity phases. By employing the Hamilton's principle, governing equations of motion for coupled axial-shear-flexural response are determined. The validity of the present theory is investigated by comparing some of the present results with those of the first-order and the other higher-order theories reported in the literature. Illustrative examples are given also to show the effects of varying gradients, porosity volume fraction, aspect ratios, and thickness to length ratios on the free vibration of the FG beams.

Concepts for Domain Wall Motion in Nanoscale Ferromagnetic Elements due to Spin Torque and in Particular Oersted Fields

  • Klaui, Mathias;Ilgaz, Dennis;Heyne, Lutz;Kim, June-Seo;Boulle, Olivier;Schieback, Christine;Zinser, Fabian;Krzyk, Stephen;Fonin, Mikhail;Rudiger, Ulrich;Backes, Dirk;Heyderman, Laura J.;Mentes, T.O.;Locatelli, A.
    • Journal of Magnetics
    • /
    • 제14권2호
    • /
    • pp.53-61
    • /
    • 2009
  • Herein, different concepts for domain wall propagation based on currents and fields that could potentially be used in magnetic data storage devices based on domains and domain walls are reviewed. By direct imaging, we show that vortex and transverse walls can be displaced using currents due to the spin transfer torque effect. For the case of field-induced wall motion, particular attention is paid to the influence of localized fields and local heating on the depinning and propagation of domain walls. Using an Au nanowire adjacent to a permalloy structure with a domain wall, the depinning field of the wall, when current pulses are injected into the Au nanowire, was studied. The current pulse drastically modified the depinning field, which depended on the interplay between the externally applied field direction and polarity of the current, leading subsequently to an Oersted field and heating of the permalloy at the interface with the Au wire. Placing the domain wall at various distances from the Au wire and studying different wall propagation directions, the range of Joule heating and Oersted field was determined; both effects could be separated. Approaches beyond conventional field- and current-induced wall displacement are briefly discussed.