DOI QR코드

DOI QR Code

Concepts for Domain Wall Motion in Nanoscale Ferromagnetic Elements due to Spin Torque and in Particular Oersted Fields

  • Klaui, Mathias (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Ilgaz, Dennis (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Heyne, Lutz (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Kim, June-Seo (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Boulle, Olivier (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Schieback, Christine (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Zinser, Fabian (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Krzyk, Stephen (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Fonin, Mikhail (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Rudiger, Ulrich (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Backes, Dirk (Fachbereich Physik, Universitat Konstanz, Universitatsstr) ;
  • Heyderman, Laura J. (Laboratory for Micro- and Nanotechnology, Paul Scherrer Institut) ;
  • Mentes, T.O. (Sincrotrone Trieste) ;
  • Locatelli, A. (Sincrotrone Trieste)
  • Published : 2009.06.30

Abstract

Herein, different concepts for domain wall propagation based on currents and fields that could potentially be used in magnetic data storage devices based on domains and domain walls are reviewed. By direct imaging, we show that vortex and transverse walls can be displaced using currents due to the spin transfer torque effect. For the case of field-induced wall motion, particular attention is paid to the influence of localized fields and local heating on the depinning and propagation of domain walls. Using an Au nanowire adjacent to a permalloy structure with a domain wall, the depinning field of the wall, when current pulses are injected into the Au nanowire, was studied. The current pulse drastically modified the depinning field, which depended on the interplay between the externally applied field direction and polarity of the current, leading subsequently to an Oersted field and heating of the permalloy at the interface with the Au wire. Placing the domain wall at various distances from the Au wire and studying different wall propagation directions, the range of Joule heating and Oersted field was determined; both effects could be separated. Approaches beyond conventional field- and current-induced wall displacement are briefly discussed.

Keywords

References

  1. I. R. McFadyen, E. E. Fullerton, and M. J. Carey, MRS Bull. 31, 379 (2006). https://doi.org/10.1557/mrs2006.97
  2. R. H. Dee, MRS Bull. 31, 404 (2006). https://doi.org/10.1557/mrs2006.102
  3. S. Tehrani, J. M. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerrera, IEEE Trans. Mag. 35, 2814 (1999). https://doi.org/10.1109/20.800991
  4. S. S. P. Parkin, U.S. patent 6,834,005 and patent application 10/984,055 (2004).
  5. S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008). https://doi.org/10.1126/science.1145799
  6. R. Cowburn, D. Petit, D. Read, and O. Petracic, Patent WO 2007/132174A1.
  7. S. S. P. Parkin, MRS Bull. 31, 389 (2006). https://doi.org/10.1016/0025-5408(96)00006-2
  8. M. Klaui, J. Phys. Condens. Matter 20, 313001 (2008). https://doi.org/10.1088/0953-8984/20/31/313001
  9. J. A. C. Bland, M. Klaui, L. Lopez-Diaz, and J. Rothman, Patent WO 0213208.
  10. D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, D. Atkinson, N. Vernier, and R. P. Cowburn, Science 296, 2003 (2002). https://doi.org/10.1126/science.1070595
  11. D. A. Allwood, G. Xiong, C. C. Faulkner, D. Atkinson, D. Petit, and R. P. Cowburn, Science 309, 1688 (2005). https://doi.org/10.1126/science.1108813
  12. J. Stohr, Y. Wu, B. D. Hermsmeier, M. G. Samant, G. R. Harp, S. Koranda, D. Dunham, and B. P. Tonner, Science 259, 658 (1993).
  13. L. Berger, J. Appl. Phys. 55, 1954 (1984). https://doi.org/10.1063/1.333530
  14. L. J. Heyderman, M. Kläui, B. Nöhammer, C. A. F. Vaz, J. A. C. Bland, and C. David, Microelec. Eng. 73-74, 780 (2004). https://doi.org/10.1016/S0167-9317(04)00220-5
  15. A. Thiaville, Y. Nakatani, J. Miltat, and Y. Suzuki Europhys. Lett. 6, 990 (2005). https://doi.org/10.1209/epl/i2004-10452-6
  16. S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004). https://doi.org/10.1103/PhysRevLett.93.127204
  17. G. Tatara and H. Kohno, Phys. Rev. Lett. 92, 86601 (2004). https://doi.org/10.1103/PhysRevLett.92.086601
  18. L. Thomas, M. Hayashi, X. Jiang, R. Moriya, C. Rettner, and S. S. P. Parkin, Nature 443, 197 (2006). https://doi.org/10.1038/nature05093
  19. G. Meier, M. Bolte, R. Eiselt, B. Kruger, D.-H. Kim, and P. Fischer, Phys. Rev. Lett. 98, 17187202 (2007). https://doi.org/10.1103/PhysRevLett.98.187202
  20. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004). https://doi.org/10.1103/PhysRevLett.92.077205
  21. M. Kläui, C. A. F. Vaz, J. A. C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L. J. Heyderman, F. Nolting, and U. Rüdiger, Phys. Rev. Lett. 94, 106601 (2005); ibid 95, 26601 (2005). https://doi.org/10.1103/PhysRevLett.94.106601
  22. J. Grollier, P. Boulenc, V. Cros, A. Hamzic, A. Vaurs, and A. Fert, Appl. Phys. Lett. 83, 509 (2003). https://doi.org/10.1063/1.1594841
  23. C. H. Marrows, Adv. Phys. 54, 585 (2005). https://doi.org/10.1080/00018730500442209
  24. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, and S. S. P. Parkin, Nature Phys. 3, 21 (2007). https://doi.org/10.1038/nphys464
  25. L. Heyne, M. Klaui, D. Backes, T. A. Moore, S. Krzyk, U. Rudiger, L. J. Heyderman, A. Fraile Rodriguez, F. Nolting, T. O. Mentes, M. A. Nino, A. Locatelli, K. Kirsch, and R. Mattheis, Phys. Rev. Lett. 100, 66603 (2008). https://doi.org/10.1103/PhysRevLett.100.066603
  26. M. Hayashi, L. Thomas, C. Rettner, R. Moriya, Y. B. Bazaliy, and S. S. P. Parkin, Phys. Rev. Lett. 98, 37204 (2007). https://doi.org/10.1103/PhysRevLett.98.037204
  27. C. Schieback, M. Klaui, U. Nowak, U. Rudiger, and P. Nielaba, Eur. Phys. J. B 59, 429 (2007). https://doi.org/10.1140/epjb/e2007-00062-2
  28. M. Klaui, H. Ehrke, U. Rudiger, T. Kasama, R. E. Dunin-Borkowski, D. Backes, L. J. Heyderman, C. A. F. Vaz, J. A. C. Bland, G. Faini, E. Cambril, and W. Wernsdorfer, Appl. Phys. Lett. 87, 102509 (2005). https://doi.org/10.1063/1.2042542
  29. D. Atkinson, D. A. Allwood, G. Xiong, M. D. Cooke, C. C. Faulkner, and R. P. Cowburn, Nature Materials 2, 85 (2003). https://doi.org/10.1038/nmat803
  30. G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L. Erskine, Nature Mater. 4, 741 (2005). https://doi.org/10.1038/nmat1477
  31. M. Hara, T. Kimura, and Y. Otani, Appl. Phys. Lett. 90, 242504 (2007). https://doi.org/10.1063/1.2748339
  32. D. Petit, A.-V. Jausovec, D. Read, and R. P. Cowburn, J. Appl. Phys. 103, 114307 (2008). https://doi.org/10.1063/1.2936981
  33. D. Ilgaz, M. Klaui, L. Heyne, O. Boulle, F. Zinser, S. Krzyk, M. Fonin, U. Rudiger, D. Backes, and L. J. Heyderman, Appl. Phys. Lett. 93, 132503 (2008). https://doi.org/10.1063/1.2990629
  34. S.-S. Ha and C.-Y. You, J. Magn. 12, 7 (2007). https://doi.org/10.4283/JMAG.2007.12.1.007
  35. M. Kläui, C. A. F. Vaz, J. Rothman, J. A. C. Bland, W. Wernsdorfer, G. Faini, and E. Cambril, Phys. Rev. Lett. 90, 097202 (2003). https://doi.org/10.1103/PhysRevLett.90.097202
  36. D. Bedau, M. Klaui, U. Rudiger, C. A. F. Vaz, J. A. C. Bland, G. Faini, L. Vila, and W. Wernsdorfer, J. Appl. Phys. 101, 09F509 (2007). https://doi.org/10.1063/1.2710460
  37. J. G. S. Lok, A. K. Geim, U. Wyder, J. C. Manan, and S. V. Dubonos, J. Magn. Magn. Mater. 204, 159 (1999). https://doi.org/10.1016/S0304-8853(99)00438-2
  38. A. Himeno, T. Okuno, T. Ono, K. Mibu, S. Nasu, and T. Shinjo, J. Magn. Magn. Mater. 286, 167 (2005). https://doi.org/10.1016/j.jmmm.2004.09.023
  39. P. Dagras, M. Klaui, M. Laufenberg, D. Bedau, L. Vila, G. Faini, C. A. F. Vaz, J. A. C. Bland, and U. Rüdiger, J. Phys. D. Appl. Phys. 40, 1247 (2007). https://doi.org/10.1088/0022-3727/40/5/S07
  40. A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake, K. Mibu, and T. Shinjo, Appl. Phys. Lett. 86, 012511 (2005). https://doi.org/10.1063/1.1847714
  41. M. Laufenberg, W. Buhrer, D. Bedau, P.-E. Melchy, M. Klaui, L. Vila, G. Faini, C. A. F. Vaz, J. A. C. Bland, and U. Rüdiger, Phys. Rev. Lett. 97, 046602 (2006). https://doi.org/10.1103/PhysRevLett.97.046602
  42. L. Thomas, Presentation 7036-33, SPIE Spintronics conference (2008).
  43. C.-Y. You, Appl. Phys. Lett. 92, 152507, (2008); L. Thomas, Presentation 7036-33, SPIE Spintronics conference 192514, (2008).
  44. M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985). https://doi.org/10.1103/PhysRevLett.55.1790
  45. T. Kimura, Y. Otani, and J. Hamrle, Phys. Rev. Lett. 96, 37201 (2006). https://doi.org/10.1103/PhysRevLett.96.037201
  46. F. J. Jedema, A. T. Filip, and B. van Wees, Nature 410, 345 (2001). https://doi.org/10.1038/35066533
  47. Y. Ji, A. Hoffmann, J. S. Jiang, J. E. Pearson, and S. D. Bader, J. Phys. D: Appl. Phys. 40, 1280 (2007). https://doi.org/10.1088/0022-3727/40/5/S13
  48. T. Yang, T. Kimura, J.-B. Laloe, and Y. Otani, Nature Phys. 4, 851 (2008). https://doi.org/10.1038/nphys1095
  49. T. Kimura and Y. Otani, J. Phys. D: Appl. Phys. 40, 1285 (2007). https://doi.org/10.1088/0022-3727/40/5/S14
  50. M. Kläui, Presentation at the Yukawa Workshop Spin Transport in Condensed Matter, Kyoto (2008); (unpublished).
  51. N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. van Wees, Nature 448, 571 (2007). https://doi.org/10.1038/nature06037
  52. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashow, and T. Rasing, Nature 435, 655 (2005). https://doi.org/10.1038/nature03564