• Title/Summary/Keyword: Modified Euclidean

Search Result 57, Processing Time 0.021 seconds

A Study on an Open/Closed Eye Detection Algorithm for Drowsy Driver Detection (운전자 졸음 검출을 위한 눈 개폐 검출 알고리즘 연구)

  • Kim, TaeHyeong;Lim, Woong;Sim, Donggyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.67-77
    • /
    • 2016
  • In this paper, we propose an algorithm for open/closed eye detection based on modified Hausdorff distance. The proposed algorithm consists of two parts, face detection and open/closed eye detection parts. To detect faces in an image, MCT (Modified Census Transform) is employed based on characteristics of the local structure which uses relative pixel values in the area with fixed size. Then, the coordinates of eyes are found and open/closed eyes are detected using MHD (Modified Hausdorff Distance) in the detected face region. Firstly, face detection process creates an MCT image in terms of various face images and extract criteria features by PCA(Principle Component Analysis) on offline. After extraction of criteria features, it detects a face region via the process which compares features newly extracted from the input face image and criteria features by using Euclidean distance. Afterward, the process finds out the coordinates of eyes and detects open/closed eye using template matching based on MHD in each eye region. In performance evaluation, the proposed algorithm achieved 94.04% accuracy in average for open/closed eye detection in terms of test video sequences of gray scale with 30FPS/$320{\times}180$ resolution.

Classification Analysis of Road Network-Based Land Use Considering Spatial Structure (공간구조를 고려한 도로망 기반 토지이용의 분류분석)

  • Kim, Hye-Young;Jun, Chul-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.24-34
    • /
    • 2014
  • To understand urban space and make appropriate plans, the integrative analyses considering road and land use simultaneously are required. In addition, studies that involve both horizontal and vertical spaces must be taken into consideration. Therefore, the purpose of this study is to conduct a classification analysis of road network-based land use considering spatial structure. The methods of this study were as follows; first, a space syntax theory considering the structure of road network was introduced for roads. For land use, to consider both horizontal and vertical development densities of residential and commercial buildings were used. And the explanatory power of three variables-Euclidean distance, global integration and length-reflected global integration-were compared. Third, based on road as an appropriate variable, modified-IPA was conducted with land use and the results were categorized into four areas. The proposed method was applied to Gangnam-gu, a CBD area in Seoul, and results were analyzed and visualized using GIS.

A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field (233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현)

  • Park, Byung-Gwan;Shin, Kyung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1267-1275
    • /
    • 2017
  • This paper describes a design of cryptographic processor supporting 233-bit elliptic curves over binary field defined by NIST. Scalar point multiplication that is core arithmetic in elliptic curve cryptography(ECC) was implemented by adopting modified Montgomery ladder algorithm, making it robust against simple power analysis attack. Point addition and point doubling operations on elliptic curve were implemented by finite field multiplication, squaring, and division operations over $GF(2^{233})$, which is based on affine coordinates. Finite field multiplier and divider were implemented by applying shift-and-add algorithm and extended Euclidean algorithm, respectively, resulting in reduced gate counts. The ECC processor was verified by FPGA implementation using Virtex5 device. The ECC processor synthesized using a 0.18 um CMOS cell library occupies 49,271 gate equivalents (GEs), and the estimated maximum clock frequency is 345 MHz. One scalar point multiplication takes 490,699 clock cycles, and the computation time is 1.4 msec at the maximum clock frequency.

VLSI Design of Reed-Solomon Decoder over GF($2^8$) with Extreme Use of Resource Sharing (하드웨어 공유 극대화에 의한 GF($2^8$) Reed-Solomon Decoder의 VLSI설계)

  • 이주태;이승우;조중휘
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.3
    • /
    • pp.8-16
    • /
    • 1999
  • This paper describes a VLSI design of Reed-Solomon(RS) decoder using the modified Euclid algorithm, with the main theme focused on the $\textit{GF}(2^8)$. To get area-efficient design, a number of new architectures have been devised with maximal register and Euclidean ALU unit sharing. One ALU is shared to replace 18 ALUs which computes an error locator polynomial and an error evaluation polynomial. Also, 18 registers are shared to replace 24 registers which stores coefficients of those polynomials. The validity and efficiency of the proposed architecture have been verified by simulation and by FLEX$^TM$ FPGA implementation in hardware description language VHDL. The proposed Reed-Solomon decoder, which has the capability of decoding RS(208,192,17) and RS(182,172,11) for Digital Versatile Disc(DVD), has been designed by using O.6$\mu\textrm{m}$ CMOS TLM Compass$^TM$ technology library, which contains totally 17k gates with a core area of 2.299$\times$2.284 (5.25$\textrm{mm}^2$). The chip can run at 20MHz while the DVD requirement is 3.74MHz.

  • PDF

Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

  • Kassim, Moath;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.589-598
    • /
    • 2018
  • To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA). PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C), PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC), to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor ($W^a$) with a weighting factor based on the Euclidean distance ($W^d$), and the third approach proposes applying $W^d$, TC, and C, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1) identify and isolate a drifted sensor that should undergo calibration, (2) identify a faulty sensor/s due to long and continuous missing data range, and (3) identify a healthy sensor.

Variable Structure Control Design Based on Eigenvalues Assignment of Sliding Mode (슬라이딩 모드 고유치 설정에 기반을 둔 가변구조 제어 설계)

  • Hong, Yeon-Chan;Lee, Tae-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2207-2213
    • /
    • 2010
  • A new scheme for variable structure control design which is based on eigenvalues assignment of sliding mode is developed. In conventional methods, generally, specific type of system matrix like canonical or regular form is required to construct a switching surface. Furthermore, the methods are not explicit. The new method in this paper solved the problems. No special type of system matrix is required and very explicit. It is shown that the switching surface can be constructed and determined uniquely without any dependency on the system form. The proposed method is based on the fact that the dynamics of sliding mode is determined by system zeros. Finally, a numerical example is given to verify the validity of the results studied in this paper.

Robust Controller with Adaptation within the Boundary Layer Application to Nuclear Underwater Inspection Robot

  • Park, Gee-Yong;Yoon, Ji-Sup;Hong, Dong-Hee;Jeong, Jae-Hoo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improved control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement. Notational Conventions Vectors are written in boldface roman lower-case letters, e.g., x and y. Matrices are written in upper-case roman letters, e.g., G and B. And ∥.∥ means the Euclidean norm.

Triangulation of Voronoi Faces of Sphere Voronoi Diagram using Delaunay Refinement Algorithm (딜러니 개선 알고리듬을 이용한 삼차원 구의 보로노이 곡면 삼각화)

  • Kim, Donguk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • Triangulation is one of the fundamental problems in computational geometry and computer graphics community, and it has huge application areas such as 3D printing, computer-aided engineering, surface reconstruction, surface visualization, and so on. The Delaunay refinement algorithm is a well-known method to generate quality triangular meshes when point cloud and/or constrained edges are given in two- or three-dimensional space. In this paper, we propose a simple but efficient algorithm to triangulate Voronoi surfaces of Voronoi diagram of spheres in 3-dimensional Euclidean space. The proposed algorithm is based on the Ruppert's Delaunay refinement algorithm, and we modified the algorithm to be applied to the triangulation of Voronoi surfaces in two ways. First, a new method to deciding the location of a newly added vertex on the surface in 3-dimensional space is proposed. Second, a new efficient but effective way of estimating approximation error between Voronoi surface and triangulation. Because the proposed algorithm generates a triangular mesh for Voronoi surfaces with guaranteed quality, users can control the level of quality of the resulting triangulation that their application problems require. We have implemented and tested the proposed algorithm for random non-intersecting spheres, and the experimental result shows the proposed algorithm produces quality triangulations on Voronoi surfaces satisfying the quality criterion.

Performance Enhancement of Algorithms based on Error Distributions under Impulsive Noise (충격성 잡음하에서 오차 분포에 기반한 알고리듬의 성능향상)

  • Kim, Namyong;Lee, Gyoo-yeong
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.49-56
    • /
    • 2018
  • Euclidean distance (ED) between error distribution and Dirac delta function has been used as an efficient performance criterion in impulsive noise environmentsdue to the outlier-cutting effect of Gaussian kernel for error signal. The gradient of ED for its minimization has two components; $A_k$ for kernel function of error pairs and the other $B_k$ for kernel function of errors. In this paper, it is analyzed that the first component is to govern gathering close together error samples, and the other one $B_k$ is to conduct error-sample concentration on zero. Based upon this analysis, it is proposed to normalize $A_k$ and $B_k$ with power of inputs which are modified by kernelled error pairs or errors for the purpose of reinforcing their roles of narrowing error-gap and drawing error samples to zero. Through comparison of fluctuation of steady state MSE and value of minimum MSE in the results of simulation of multipath equalization under impulsive noise, their roles and efficiency of the proposed normalization method are verified.

An indoor localization approach using RSSI and LQI based on IEEE 802.15.4 (IEEE 802.15.4기반 RSSI와 LQI를 이용한 실내 위치추정 기법)

  • Kim, Jung-Ha;Kim, Hyun-Jun;Kim, Jong-Su;Lee, Sung-Geun;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.92-98
    • /
    • 2014
  • Recently, Fingerprint approach using RSSI based on WLAN has been many studied in order to construct low-cost indoor localization systems. Because this technique is relatively evaluated non-precise positioning technique compared with the positioning of Ultra-Wide-Band(UWB), the performance of the Fingerprint based on WLAN should be continuously improved to implement various indoor location. Therefore, this paper presents a Fingerprint approach which can improve the performance of localization by using RSSI and LQI contained IEEE 802.15.4 standard. The advantages of these techniques are that the characteristics of each location is created more clearly by utilizing RSSI and LQI and Fingerprint technique is improved by using the modified Euclidean distance method. The experimental results which are applied in NLOS indoor environment with various obstacles show that the accuracy of localization is improved to 22% compared to conventional Fingerprint.