• 제목/요약/키워드: Model formulation

검색결과 1,671건 처리시간 0.028초

Inverse method to obtain reactivity in nuclear reactors with P1 point reactor kinetics model using matrix formulation

  • Suescun-Diaz, Daniel;Espinosa-Paredes, Gilberto;Escobar, Freddy Humberto
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.414-422
    • /
    • 2021
  • The aim of this work considers a second order point reactor kinetics model based on the P1 approximation of transport theory, called in this work as P1 point reactor model. The P1 point reactor model implicitly considers the time derivative of the neutron source which has not been thus considered previously. The inverse method to calculate the reactivity in nuclear reactors -chosen because its high accuracy- Matrix Formulation. The numerical results shown that the Matrix Formulation for the reactivity estimation constitutes a method with insignificant calculation errors.

Tracking Object of Snake based on the Refinement using 5 Point Invariant

  • Kim, Won;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.24.3-24
    • /
    • 2001
  • In cases where strong a priori knowledge about the object being analyzed is available, it can be embedded into the formulation of the snake model. When prior knowledge of shape is available for a specific application, information concerning the shape of the desired objects can be incorporated into the formulation of the snake model as an active contour model. In this paper we show Five points algorithm can be applied to design invariant energy.

  • PDF

회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구 (Study of of Flexible Multibody Dynamics with Rotary Inertia)

  • 김성수
    • 소음진동
    • /
    • 제6권3호
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Optimal shape design of a polymer extrusion die by inverse formulation

  • Na, Su-Yeon;Lee, Tai-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.315-318
    • /
    • 1995
  • The optimum design problem of a coat-hanger die is solved by the inverse formulation. The flow in the die is analyzed using three-dimensional model. The new model for the manifold geometry is developed for the inverse formulation. The inverse problem for the optimum die geometry is formed as the optimization problem whose objective function is the linear combination of the square sum of pressure gradient deviation at die exit and the penalty function relating to the measure of non-smoothness of solution. From the several iterative solutions of the optimization problem, the optimum solution can be obtained automatically while producing the uniform flow rate distribution at die exit.

  • PDF

Innovative modeling of tuned liquid column damper controlled structures

  • Di Matteo, Alberto;Di Paola, Mario;Pirrotta, Antonina
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.117-138
    • /
    • 2016
  • In this paper a different formulation for the response of structural systems controlled by Tuned Liquid Column Damper (TLCD) devices is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it has been demonstrated that existing model may lead to inaccurate prediction of liquid motion, thus reflecting in a possible imprecise description of the structural response. For this reason the recently proposed fractional formulation introduced to model liquid displacements in TLCD devices, is here extended to deal with TLCD controlled structures under base excitations. As demonstrated through an extensive experimental analysis, the proposed model can accurately capture structural responses both in time and in frequency domain. Further, the proposed fractional formulation is linear, hence making identification of the involved parameters extremely easier.

FUZZY 할당모형 및 공격항공기의 표적 할당 문제에 대한 응용 (A Fuzzy Allocation Model and Its Application to Attacker Assignment Problem)

  • 윤석준;고순주
    • 한국국방경영분석학회지
    • /
    • 제18권1호
    • /
    • pp.47-60
    • /
    • 1992
  • A class of allocation problems can be modeled in a linear programming formulation. But in reality, the coefficient of both the cost and constraint equations can not be generally determined by crisp numbers due to the imprecision or fuzziness in the related parameters. To account for this. a fuzzy version is considered and solved by transforming to a conventional non-linear programming model. This gives a solution as well as the degree that the solution satisfies the objective and constraints simultaneously and hence will be very useful to a decision maker. An attacker assignment problem for multiple fired targets has been modeled by a linear programming formulation by Lemus and David. in which the objective is to minimize the cost that might occur on attacker's losses during the mission. A fuzzy version of the model is formulated and solved by transforming it to a conventional nonlinear programming formulation following the Tanaka's approach. It is also expected that the fuzzy approach will have wide applicability in general allocation problems

  • PDF

탐색기 주사루프의 2자유도 강인제어기 설계 (Two Degree of Freedom Robust Controller Design of a Seeker Scan-Loop)

  • 이호평;송창섭
    • 한국정밀공학회지
    • /
    • 제12권10호
    • /
    • pp.157-165
    • /
    • 1995
  • The new formulation of designing the two degree of freedom(TDF) robust controller is proposed using $H_{\infty}$optimization and model matching method. In this formulation the feedback controller and feedforward controller are designed in a single step using $H_{\infty}$optimization procedure. Roughly speaking, the feedback controller is designed to meet robust stability and disturbance rejection specifications, while the feedforward controller is used to improve the robust model matching properties of the closed loop system. The proposed formulation will be illustrated and evaluated on a seeker scan-loop. And the performances of TDF robust controller are compared with those of the $H_{\infty}$ controller designed using Loop Shaping Design Procedure proposed by McFarlane and Glover.lover.

  • PDF

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • 제7권5호
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

피에조콘 시험의 유한요소 해석 II (Finite Element Analysis of Piezocone Test II)

  • 김대규;김낙경
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.191-199
    • /
    • 2000
  • 본 연구에서는 피에조콘 시험의 유한요소해석을 수행하였다. 이를 위하여 점탄소성 bounding surface 모델, 가상일의 방정식(virtual work equation) 및 theory of mixtures를 Updated Lagrangian reference frame에서 formulation하였다. 결과적으로 구성된 유한요소 formulation을 컴퓨터 프로그래밍 하였으며 유한요소해석에서 얻은 콘 저항치, 과잉간극수압 및 간극수압소산 등의 결과를 실험치와 비교 분석하였으며 피에조콘 주변의 응력, 변형율 및 과잉간극수압의 contour를 유한요소해석에서 구하여 이를 고찰하였다. 비등방성 및 점성이 추가된 구성모델을 사용함으로서 응력의 비등방성 및 관입속도를 효과적으로 simulation할 수 있었다. 유한요소 Formulation 과정은 'I' 결과는 'II'에서 설명된다.

  • PDF

비등방경화 구성모델을 이용한 대변형 해석 : I. 정식화 (Large Deformation Analysis Using and Anistropic Hardening Constitutive Model : I. Formulation)

  • 오세붕
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.207-214
    • /
    • 2002
  • 미소변형에서 대변형에 이르는 전체 변형도 영역의 구성모델을 ABAQUS 코드에 구현하였다. 구성모델은 비등방경화규칙에 근거한 전응력 개념의 탄소성 모델이다. 사용된 정식화 및 알고리즘은 (1) Jaumann 응력속도를 이용한 대변형도 조건 정식화 (2) 내재적 인 응력적분 (3) 일관된 접선계수를 포함하고 있다. 이를 통하여 비등방경화 구성관계를 적용한 대변형 해석을 정확하고 효율적으로 수행할 수 있는 토대를 구축하였다. 동반논문(전병곤 등, 2002)에서는 예제해석을 통하여 새로운 구성모델과 ABAQUS 코드를 이용한 대변형 해석결과를 기술하였다.