Acknowledgement
The authors thank the research seed of Computational Physics, the research group in Applied Physics FIASUR, and the academic and financial support of the Universidad Surcolombiana.
References
- J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, John Wiley and Sons Inc, New York, USA, 1976.
- Y. Shimazu, Y. Nakano, Y. Tahara, T. Okayama, Development of a compact digital reactivity meter and a reactor physics data processor, Nucl. Technol. 77 (1987) 247-254. https://doi.org/10.13182/NT87-A33964
- S.A. Ansari, Development of on-line reactivity meter for nuclear reactors, IEEE Trans. Nucl. Sci. 38 (1991) 946-952. https://doi.org/10.1109/23.83857
- S.E. Binney, A.I.M. Bakir, Design and development of a personal computer based reactivity meter for a nuclear reactor, Nucl. Technol. 85 (1989) 12-21. https://doi.org/10.13182/NT89-A34223
- J.E. Hoogenboom, A.R. Van Der Sluijs, Neutron source strength determination for on-line reactivity measurements, Ann. Nucl. Energy 15 (1988) 553-559. https://doi.org/10.1016/0306-4549(88)90059-X
- H. Malmir, N. Vosoughi, On-line reactivity calculation using Lagrange method, Ann. Nucl. Energy 62 (2013) 463-467. https://doi.org/10.1016/j.anucene.2013.07.006
- D.D. Suescun, A.M. Senra, Da Silva F. Carvalho, Formulation for the calculation of reactivity without nuclear power history, J. Nucl. Sci. Technol. 44 (2007) 1149-1155. https://doi.org/10.1080/18811248.2007.9711358
- D. Suescun-Diaz, E. Cabrera-Capera, J.H. Lozano-Parada, Matrix formulation for the calculation of nuclear reactivity, Ann. Nucl. Energy 116 (2018) 137-142. https://doi.org/10.1016/j.anucene.2018.02.033
- G. Espinosa-Paredes, M. Polo-Labarrios, E. Espinosa-Martinez, Fractional neutron point kinetics equations for nuclear reactor dynamics, Ann. Nucl. Energy 38 (2011) 307-330. https://doi.org/10.1016/j.anucene.2010.10.012
- A.L. Nunes, A.S. Martinez, Da Silva F. Carvalho, D.A.P. Palma, A new formulation to the point kinetics equations considering the time variation of the neutron currents, World J. Nucl. Sci. Technol. 5 (2015) 57-71. https://doi.org/10.4236/wjnst.2015.51006
- D.A.P. Palma, A.L. Nunes, A.M. Senra, Effect of the time variation of the neutron current density in the calculation of the reactivity, Ann. Nucl. Energy 96 (2016) 204-211. https://doi.org/10.1016/j.anucene.2016.05.022
- M.R. Altahhan, M.S. Nagy, H.H. Abou-Gabal, A.E. Aboanber, Formulation of a point reactor kinetics model based on the neutron telegraph equation, Ann. Nucl. Energy 91 (2016) 176-188. https://doi.org/10.1016/j.anucene.2016.01.011
- D.A.P. Palma, A.M. Senra, C.F. Da Silva, The calculation of the reactivity by the telegraph equation, Ann. Nucl. Energy 110 (2017) 31-35. https://doi.org/10.1016/j.anucene.2017.06.017
- H. Hayasaka, S. Takeda, Study of neutron wave propagation, J. Nucl. Sci. Technol. 5 (1968) 564-571. https://doi.org/10.1080/18811248.1968.9732515
- K.H. Beckurts, K. Wirtz, Neutron Physics, Springer-Verlag, 1964.
- M. AsH, Nuclear Reactor Kinetics, McGraw-Hill Co. Inc, 1965.
- G.F. Niederauer, Neutron Kinetics Based on the Equation of Telegraphy (Ph.D. Thesis), Iowa State university of Science and Technology, 1967. Retrospective Theses and Dissertations. Paper 3416.
- G. Espinosa-Paredes, R.I. Cazares-Ramirez, Source term in the linear analysis of FNPK equations, Ann. Nucl. Energy 96 (2016) 432-440. https://doi.org/10.1016/j.anucene.2016.06.038
Cited by
- Point reactor kinetics equations from P1 approximation of the transport equations vol.144, 2020, https://doi.org/10.1016/j.anucene.2020.107592
- An Improved Tandem Neural Network Architecture for Inverse Modeling of Multicomponent Reactive Transport in Porous Media vol.57, pp.12, 2021, https://doi.org/10.1029/2021wr030595
- An efficient exponential representation for solving the two-energy group point telegraph kinetics model vol.166, 2021, https://doi.org/10.1016/j.anucene.2021.108698