DOI QR코드

DOI QR Code

Inverse method to obtain reactivity in nuclear reactors with P1 point reactor kinetics model using matrix formulation

  • Received : 2020.04.25
  • Accepted : 2020.07.06
  • Published : 2021.02.25

Abstract

The aim of this work considers a second order point reactor kinetics model based on the P1 approximation of transport theory, called in this work as P1 point reactor model. The P1 point reactor model implicitly considers the time derivative of the neutron source which has not been thus considered previously. The inverse method to calculate the reactivity in nuclear reactors -chosen because its high accuracy- Matrix Formulation. The numerical results shown that the Matrix Formulation for the reactivity estimation constitutes a method with insignificant calculation errors.

Keywords

Acknowledgement

The authors thank the research seed of Computational Physics, the research group in Applied Physics FIASUR, and the academic and financial support of the Universidad Surcolombiana.

References

  1. J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, John Wiley and Sons Inc, New York, USA, 1976.
  2. Y. Shimazu, Y. Nakano, Y. Tahara, T. Okayama, Development of a compact digital reactivity meter and a reactor physics data processor, Nucl. Technol. 77 (1987) 247-254. https://doi.org/10.13182/NT87-A33964
  3. S.A. Ansari, Development of on-line reactivity meter for nuclear reactors, IEEE Trans. Nucl. Sci. 38 (1991) 946-952. https://doi.org/10.1109/23.83857
  4. S.E. Binney, A.I.M. Bakir, Design and development of a personal computer based reactivity meter for a nuclear reactor, Nucl. Technol. 85 (1989) 12-21. https://doi.org/10.13182/NT89-A34223
  5. J.E. Hoogenboom, A.R. Van Der Sluijs, Neutron source strength determination for on-line reactivity measurements, Ann. Nucl. Energy 15 (1988) 553-559. https://doi.org/10.1016/0306-4549(88)90059-X
  6. H. Malmir, N. Vosoughi, On-line reactivity calculation using Lagrange method, Ann. Nucl. Energy 62 (2013) 463-467. https://doi.org/10.1016/j.anucene.2013.07.006
  7. D.D. Suescun, A.M. Senra, Da Silva F. Carvalho, Formulation for the calculation of reactivity without nuclear power history, J. Nucl. Sci. Technol. 44 (2007) 1149-1155. https://doi.org/10.1080/18811248.2007.9711358
  8. D. Suescun-Diaz, E. Cabrera-Capera, J.H. Lozano-Parada, Matrix formulation for the calculation of nuclear reactivity, Ann. Nucl. Energy 116 (2018) 137-142. https://doi.org/10.1016/j.anucene.2018.02.033
  9. G. Espinosa-Paredes, M. Polo-Labarrios, E. Espinosa-Martinez, Fractional neutron point kinetics equations for nuclear reactor dynamics, Ann. Nucl. Energy 38 (2011) 307-330. https://doi.org/10.1016/j.anucene.2010.10.012
  10. A.L. Nunes, A.S. Martinez, Da Silva F. Carvalho, D.A.P. Palma, A new formulation to the point kinetics equations considering the time variation of the neutron currents, World J. Nucl. Sci. Technol. 5 (2015) 57-71. https://doi.org/10.4236/wjnst.2015.51006
  11. D.A.P. Palma, A.L. Nunes, A.M. Senra, Effect of the time variation of the neutron current density in the calculation of the reactivity, Ann. Nucl. Energy 96 (2016) 204-211. https://doi.org/10.1016/j.anucene.2016.05.022
  12. M.R. Altahhan, M.S. Nagy, H.H. Abou-Gabal, A.E. Aboanber, Formulation of a point reactor kinetics model based on the neutron telegraph equation, Ann. Nucl. Energy 91 (2016) 176-188. https://doi.org/10.1016/j.anucene.2016.01.011
  13. D.A.P. Palma, A.M. Senra, C.F. Da Silva, The calculation of the reactivity by the telegraph equation, Ann. Nucl. Energy 110 (2017) 31-35. https://doi.org/10.1016/j.anucene.2017.06.017
  14. H. Hayasaka, S. Takeda, Study of neutron wave propagation, J. Nucl. Sci. Technol. 5 (1968) 564-571. https://doi.org/10.1080/18811248.1968.9732515
  15. K.H. Beckurts, K. Wirtz, Neutron Physics, Springer-Verlag, 1964.
  16. M. AsH, Nuclear Reactor Kinetics, McGraw-Hill Co. Inc, 1965.
  17. G.F. Niederauer, Neutron Kinetics Based on the Equation of Telegraphy (Ph.D. Thesis), Iowa State university of Science and Technology, 1967. Retrospective Theses and Dissertations. Paper 3416.
  18. G. Espinosa-Paredes, R.I. Cazares-Ramirez, Source term in the linear analysis of FNPK equations, Ann. Nucl. Energy 96 (2016) 432-440. https://doi.org/10.1016/j.anucene.2016.06.038

Cited by

  1. Point reactor kinetics equations from P1 approximation of the transport equations vol.144, 2020, https://doi.org/10.1016/j.anucene.2020.107592
  2. An Improved Tandem Neural Network Architecture for Inverse Modeling of Multicomponent Reactive Transport in Porous Media vol.57, pp.12, 2021, https://doi.org/10.1029/2021wr030595
  3. An efficient exponential representation for solving the two-energy group point telegraph kinetics model vol.166, 2021, https://doi.org/10.1016/j.anucene.2021.108698