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a b s t r a c t

The aim of this work considers a second order point reactor kinetics model based on the P1 approxi-
mation of transport theory, called in this work as P1 point reactor model. The P1 point reactor model
implicitly considers the time derivative of the neutron source which has not been thus considered
previously. The inverse method to calculate the reactivity in nuclear reactors -chosen because its high
accuracy- Matrix Formulation. The numerical results shown that the Matrix Formulation for the reac-
tivity estimation constitutes a method with insignificant calculation errors.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The essential process at the core of a nuclear reactor is nuclear
fission. When heavy atoms like Uranium 235 are bombarded with
thermal neutrons, a chain reaction is produced, releasing a great
amount of energy that is later converted into electric energy [1].

The equations of point kinetics express the temporal variation of
the neutron density and the concentration of the delayed neutron
precursors. In practice, it is convenient to maintain control of the
reactor by determining the reactivity, depending upon the neutron
density shape, for example, in a power excursion this is exponential
and the reactivity value may be incorrect, ignoring the real value.
For this reason, start recalling there are different methods for
classical reactivity calculation [2e5] that implement the point ki-
netic equations. Likewise, there are methods in the literature that
solve for reactivity, such as the Lagrange polynomial method [6]
and another method that do not use the historic of the neutron
density [7]. In a recent publication, the best accuracy is obtained
with the matrix formulation method [8].

In the last few years, the point kinetic equations have been
modified according to the needs of a specific type of reactor. A
escún-Díaz).

by Elsevier Korea LLC. This is an
fractional point kinetic model was derived that consist in three
terms between derivatives of order non-integer [9]. After, the
transport equation was used, considering the time variation of the
neutron density current, achieving a modified point-kinetic equa-
tion [10]. These works led to the modified reactivity was calculated
as a function of the classical reactivity [11], employing the deriva-
tive method [7]. In that same year, a work was published where the
point kinetic equation was modeled using the neutron telegraph
equation [12]. Finally, based on the neutron telegraph equation, the
modified reactivity was calculated again using the derivative
method [13].

The aim of this work is to present, for the first time, a matrix
formulation method [8] for the calculation of the modified reac-
tivity with an inverse method that considers a second-order point
reactor kinetics model, based on the P1 approximation of transport
theory, called in this work P1 point reactor model. We show that
the matrix formulation method is simple, reliable and precise. The
only existing method, known as the derivative method, may have
drawbacks as it is only valid for seven forms of neutron density [7],
while the matrix formulation method does not have that limitation
[8].

This work is organized as follows: the second section shows
how to obtain the modified point kinetic equation, and how its
inverse is used to calculate the P1 point kinetic reactivity. The third
section presents the matrix method [8] used to solve the P1 point
open access article under the CC BY-NC-ND license (http://creativecommons.org/

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:daniel.suescun@usco.edu.co
http://crossmark.crossref.org/dialog/?doi=10.1016/j.net.2020.07.003&domain=pdf
www.sciencedirect.com/science/journal/17385733
www.elsevier.com/locate/net
https://doi.org/10.1016/j.net.2020.07.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.net.2020.07.003
https://doi.org/10.1016/j.net.2020.07.003


D. Suescún-Díaz et al. / Nuclear Engineering and Technology 53 (2021) 414e422 415
kinetic reactivity. In the fourth section, we show the maximum
differences of the P1 point kinetic reactivity and the classical
reactivity, using the matrix formulation method. In the last section
some results are presented.
2. Theoretical considerations

2.1. Preliminaries

It is common to find that the point reactor model of neutron
kinetics is obtained from the one-speed diffusion equation, e.g.,
Ref. [1]. In this sense, all neutrons are considered to have the same
energy, which is known as one-speed approximation or one-group
of energy approximation. The derivation of the neutron flux 4ðr; tÞ
is obtained by considering that the rate of change of the neutron
density in a given volume is the difference between the rate of
neutrons produced and lost due to absorption or leakage in that
given volume:

1
y

v4ðr; tÞ
vt

þV,Jðr; tÞ þ
X
a
ðrÞ4ðr; tÞ ¼ Sðr; tÞ (1)

where y is neutron velocity,
P

aðrÞ is the macroscopic absorption
cross section. The relation between 4ðr; tÞ and Jðr; tÞ is given by

Jðr; tÞ¼ � DðrÞV4ðr; tÞ (2)

This equation was unfortunately referred to as Fick’s Law: the
behavior in the neutrons transport is a different phenomenon than
molecular transport, besides of abysmal differences in space-time
scales and mean free trajectory. The diffusion coefficient DðrÞ is
defined as:

DðrÞ¼ 1
3StrðrÞ (3)

The macroscopic transport cross section StrðrÞ is given by

StrðrÞ¼StðrÞ � m0SsðrÞ (4)

where StðrÞ is the macroscopic total cross section, SsðrÞ is the
macroscopic scattering cross section, and m0 is the averaging scat-
tering angle cosine.

Replacing Eq. (2) into Eq. (1), leads to

1
y

v4ðr; tÞ
vt

þ
X
a
ðrÞ4ðr; tÞ ¼ Sðr; tÞ þ DðrÞV24ðr; tÞ (5)

which is known as the diffusion equation. Now, by applying the
procedure given in Ref. [1], the point kinetics equations can be
obtained:

dnðtÞ
dt

¼ rðtÞ � b

L
nðtÞ þ

Xm
i¼1

liciðtÞ (6)

where nðtÞ is the neutron density, rðtÞ is the reactivity, b is the is the
total effective fraction for delayed neutron precursors, li is the
decay constant of the ith group of delayed neutron precursors and
ciðtÞ is the concentration of the ith group of delayed neutron pre-
cursors, given by the radioactive disintegration law, which is dis-
cussed in detail in the following section. In order to obtain this
equation it was necessary to consider a homogeneous and uniform
reactor e like a batch reactor, so that the diffusion coefficient is not
a function of the position r.
2.2. P1 point reactor model

The current density for the one-speed model is given by [1].

1
y

vJ
vt

þV,

ð
4p

bU bU fðr; bU; tÞd bU þ StðrÞJðr; tÞ

¼ m0SsðrÞJðr; tÞ þ S1ðr; tÞ (7)

where m0 is the averaging scattering angle cosine, and fðr; bU; tÞ is
the angular flux, which is approximated by:

fðr; bU; tÞy 1
4p

4ðr; tÞ þ 3
4p

Jðr; tÞ, bU (8)

Then, the current vector can be written as

1
y

vJðr; tÞ
vt

þ1
3
V4ðr; tÞ þ

X
tr

ðrÞJðr; tÞ ¼ S1ðr; tÞ (9)

Eqs. (1) and (9) are known as P1 equations, where Eq. (8) is
equivalent to expanding the angular flux in Legendre polynomials.
Now, considering that the neutron source term is isotropic, i.e., S1ðr;
tÞ ¼ 0, this equation can be rewritten as:

tðrÞ vJðr; tÞ
vt

þ Jðr; tÞ ¼ �DðrÞV4ðr; tÞ (10)

where the term tðrÞ can be defined as relaxation time, given by

tðrÞ¼ 3DðrÞ
y

(11)

Eq. (10) considers memory effects [9], and Eq. (2) considers that
the phenomena is instantaneous.

If we apply the divergence operator (V,) to Eq. (10), it leads to�
t
v

vt
þ1
�
V , Jðr; tÞ¼ � DV24ðr; tÞ (12)

for a homogeneous reactor where t;Dsf ðrÞ. Now, using Eq. (1), we
can determine the term V,Jðr; tÞ:

V , Jðr; tÞ ¼ �1
y

v4ðr; tÞ
vt

�
X
a
4ðr; tÞ þ Sðr; tÞ (13)

Substituting this equation into Eq. (12):

�
t
v

vt
þ1
� 

�1
y

v4ðr;tÞ
vt

�
X
a
4

 
r; t

!
þS

 
r; t

!!
¼�DV24

 
r; t

!
(14)

performing the indicated operations and grouping terms, we
obtain:

t

y

v24ðr; tÞ
vt2

þ
"
t
X
a

þ1
y

#
v4ðr; tÞ

vt
þ
X
a
4ðr; tÞ¼ Sðr; tÞþDV24ðr; tÞ

þ t
vSðr; tÞ

vt
(15)

which is a hyperbolic PDE. When t ¼ 0 it can be observed that the
PDE is converted into a parabolic one, and the diffusion equation is
recovered.

The neutrons produced Sðr; tÞ includes instantaneous and
delayed neutrons:
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Sðr; tÞ¼ ð1� bÞk∞Sa4ðr; tÞ þ
Xm
i¼1

liCiðr; tÞ (16)

where b is the total effective fraction of delayed neutrons which, k∞
is the infinitemultiplication factor, li is the decay constant of the ith
precursor group. The concentration of the ith precursor group
Ciðr; tÞ is given by:

vCiðr; tÞ
vt

¼bik∞
X
a
4ðr; tÞ� liCiðr; tÞ i¼1;2; :::;m (17)

where bi is the fraction of delayed neutrons of ith precursor group.
According with Hayasaka and Takeda [14], Eq. (15) was previ-

ously described by Beckurts and Wirtz [15] and AsH [16]. However,
the concept of relaxation time t was not treated as such in those
works. On the other hand, in the work of Niederauer [17], the
relaxation time t was defined as finite transport time and the
symbol used was t0.

Applying variable separation for the solution 4ðr;tÞ ¼ ynðtÞjðrÞ,
where jðrÞ correspond to the eigen function of the Helmholtz
equation. This separation the variables is also applied to the
neutron source and the concentration of the ith precursor group:
Sðr; tÞ ¼ sðtÞjðrÞ and Cðr; tÞ ¼ cðtÞjðrÞ, respectively. It is important
to note that lowercase is used for variables which depend only on
time. A three dimensional reactor is governed by the Helmholtz
equation: V2jðrÞ ¼ � B2gjðrÞ, where Bg is a parameter called
geometrical buckling. The space eigen functions are determined as
the solution to the eigenvalue problem V2jhðrÞþ B2hjhðrÞ ¼ 0. The
parameter geometrical buckling is characterized by its dependence
on the geometry of the reactor and is the eigenvalue when h ¼ 1.
Then, with these fundamental considerations and the well-mixed
reactor assumption, the P1 point reactor model is obtained:

t
d2nðtÞ
dt2

þðt ySa þ1ÞdnðtÞ
dt

¼ rðtÞ � b

L
nðtÞþ

Xm
i¼1

liciðtÞ þ t
dsðtÞ
dt

(18)

sðtÞ¼ ð1� bÞ
L

nðtÞ þ
Xm
i¼1

liciðtÞ (19)

dciðtÞ
dt

¼ bi
L
nðtÞ � liciðtÞ i ¼ 1;2; :::;m (20)

Some definitions involved in these equations are the reactivity
r ¼ ðk � 1Þk�1, where k is the effective multiplication factor; the

neutron generation time L ¼ Pnlðk y SaÞ�1, and the nonleakage

probability given by Pnl ¼ ð1þ L2B2gÞ
�1

where L is the diffusion

length ðD S�1
a Þ.

Unlike Eq. (18), Niederauer in 1967 expresses the equation in
terms of the time derivative of the concentration of the precursors
group [17], and not in terms of the time derivative of the neutron
source. Other more recent works such as [10e13] are essentially
based on Niederauer’s work [17]. We can observe on Eq. (18) that if
t/0, this expression becomes the conventional point kinetic
equation given by Eq. (6).

Next, we show the inverse point kinetic equation method, with
the objective of reaching a formulation of the temporal reactivity
form.
3. Calculating the reactivity from the inverse kinetics

Since reactivity is an important parameter in a nuclear reactor, it
is important to know it with the highest precision possible,
therefore in this section, we deduce the reactivity for the classical
point kinetic Eq. (6) and the reactivity for the P1 point reactor model,
given by Eq. (18).

From Eq. (6) we obtain the classical reactivity expression, which
is related to the neutron density in the following way:

rclass ¼ bþ L

nðtÞ
dnðtÞ
dt

� L

nðtÞ
Xm
i¼1

liciðtÞ (21)

This equation allows to calculate the reactivity when knowing
the neutron density and the concentration of precursors, which has
been used in different works e.g. Ref. [1e8]. In this work rclass is
called the classical reactivity.

The expression for the P1 point kinetic reactivity rp1 which is
obtained from Eq. (18), considers the neutron source given by Eq.
(19):

rp1
¼ bþ L

nðtÞ

"
t
d2nðtÞ
dt2

þðt ySa þ1ÞdnðtÞ
dt

�
Xm
i¼1

liciðtÞ� t
dsðtÞ
dt

#
(22)

which can be re-written in terms of rclass:

rp1
¼ rclass þ

Lt

nðtÞ

"
d2nðtÞ
dt2

þ ySa
dnðtÞ
dt

� dsðtÞ
dt

#
(23)

where

dsðtÞ
dt

¼ð1� bÞ
L

dnðtÞ
dt

þ nðtÞ
L

Xm
i¼1

libi �
Xm
i¼1

l2i ciðtÞ (24)

This equation is obtained from the time derivative of Eq. (19)
and the result is combined with Eq. (20).

The classical reactivity rclass given by Eq. (21) and the P1 point
reactor reactivity rp1 given by Eq. (23), need the value of precursors
concentration. The exact shape of the precursor concentration ciðtÞ,
is solved using Eq. (20) through the integrating factor and having
into account the initial condition cið0Þ ¼ binð0Þ=liL, We get:

ciðtÞ¼
bi
L

24e�lit

li
nð0Þþ

ðt
0

eliðt’�tÞnðt’Þdt’
35 (25)

where nð0Þ is the initial condition for the neutron density, which
marks the starting point in the simulations (t ¼ 0). For some shapes
of the neutron density nðtÞ, the integral in Eq. (25) can be solved
analytically; which means that we can compare with our proposed
method.

We observe on Eq. (23) that the P1 point reactor kinetic reactivity
rp1 includes the classical reactivity in Eq. (21), therefore we can
define this reactivity as:

rðtÞp1 ¼ rðtÞclass þ t rncðtÞ (26)

where the term rncðtÞ is a function of the derivative with respect to
time of the neutron source:

rncðtÞ¼
L

nðtÞ

"
d2nðtÞ
dt2

þ ySa
dnðtÞ
dt

� dsðtÞ
dt

#
(27)
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The criticality condition of the reactor is fulfilled with the initial
condition at t ¼ 0, so that, rp1

ð0Þ ¼ rclassð0Þ ¼ 0.
4. Numerical method to solve the classical reactivity rclass and
P1 reactivity rp1

Themethods that can be used to calculate the classical reactivity
rclass and the P1 point reactor kinetic reactivity rp1 should be as
accurate and with the lowest computational cost. A method re-
ported in the literature that meet these characteristics is the matrix
formulation method [8].

In this work, we use the point kinetics equation given by Eqs. (6)
and (20) to obtain the precursor concentration ciðtÞwith the matrix
formulation method [8] knowing the form of the neutron density,
which is known through the detection systems of nuclear power
plants (e.g., power range neutron monitor, local power range
monitor and average power range monitor). So, by substituting this
value in Eq. (21) and Eq. (24), we can solve for rclass and rp1.

In order to present the numerical method, we rewrite Eqs. (6)
and (20) including the initial conditions:

d n ðtÞ
dt

¼ r� b

L
n ðtÞ þ

Xm
i¼1

liciðtÞ (28)

dciðtÞ
dt

¼ bi
L
nðtÞ � liciðtÞ; i ¼ 1;2; :::;m (29)

nðt¼0Þ¼nð0Þ (30)

ciðt¼0Þ¼ bi
Lli

nð0Þ (31)

When the matrix formulation method is applied to these
equations it reduces them one homogeneous first order differential
equation, such that:

dXðtÞ
dt

¼QðtÞXðtÞ; Xð0Þ ¼ x0 (32)

where dXðtÞ
dt and XðtÞ are vector functions of mþ 1 dimensions, with

their respective initial condition nð0Þ at Xð0Þ and its matrix function
QðtÞ of ðmþ1Þ � ðmþ1Þ dimensions:

dX ðtÞ
d t

¼ d
d t

2666666664

n ðtÞ
c1ðtÞ
c2ðtÞ

:
:
:

cmðtÞ

3777777775
; XðtÞ ¼

2666666664

n ðtÞ
c1ðtÞ
c2ðtÞ

:
:
:

cmðtÞ

3777777775
; Xð0Þ

¼ nð0Þ

2666666664

1
b1ðLl1Þ�1

b2ðLl2Þ�1

:
:
:

bmðLlmÞ�1

3777777775
(33)
QðtÞ¼

2666666664

n’ðtÞnðtÞ�1 0 0 ::: 0
b1L

�1 �l1 0 ::: 0
b2L

�1 0 �l2 ::: 0
:
:
:

:
:
:

:
:
:

:
:
:

bmL
�1 0 0 ::: �lm

3777777775
(34)

It can be verified that by multiplying the first row of the matrix
Q(t) given by Eq. (34) with the column vector X(t) given by Eq. (33),
the time derivative of the density of the neutron population is

obtained, which agrees with Eq. (32), that is: dnðtÞdt ¼ n’ðtÞ
nðtÞ*nðtÞ ¼ dnðtÞ

dt .

By performing the other multiplications, it is possible to verify that
the equations of the precursor concentration given by Eq. (29) can
be obtained. The homogenous systemwith thematrix functionQðtÞ
given by Eq. (32) is an initial value problem that can be solved for
any time using the exponential matrix. The solution for Eq. (32) is
such that:

Xkþ1 ¼Xke

ðtkþ1

tk

QðtÞ dt
(35)

where Xk is the value of the vector function at a time tk and Xkþ1 is
the value for a later time tkþ1. The term in the exponential matrix is
solved by integrating each element of the matrix, thus creating a

new matrix Mk ¼ R tkþ1
tk

QðtÞdt. Then:

Mk ¼

26666666666666666664

Ln
�
nkþ1
nk

�
0 0 ::: 0

b1
L

h �l1h 0 ::: 0

b2
L

h 0 �l2h ::: 0

:

:

:

:

:

:

:

:

:

:

:

:

bm
L

h 0 0 ::: �lmh

37777777777777777775

(36)

where h is the time step given by h ¼ tkþ1 � tk and Ln is the natural
logarithm.

Developing this expression, we get to the solution:

Xkþ1 ¼Rk e
Dk R�1

k Xk (37)

where Rk is a matrix which columns are the eigenvectors of Mk, Dk
is a diagonal matrix where the elements on its diagonal are the
eigenvalues of Mk. This solution is computed for every time step
using the matrix and vector multiplications Rk, Dk and R�1

k .
To reduce the computational cost, the matrices are calculated

analytically:MkUm ¼ umUm, whereMk is a lower triangular matrix,
um are the eigenvalues, and Um are eigenvectors m ¼ 1;2; :::;kþ 1,
with which the matrix is built Rk ¼ ½U1 U2 ::: Umþ1�. Then, the
diagonal matrix Dk is defined by:

Dk ¼diag
�
Ln
�
nkþ1
nk

�
� l1h ::: lmh

�
(38)

The solution for the elements uij of the matrix Rk and the ele-
ments vij of the inverse of the eigenvector matrix Rk are calculated
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from the expression Rk R
�1
k ¼ I. All are computed in each time step

as follows:

vij ¼uij ¼ dij; for i; j ¼ 1;2; :::;mþ 1 (39)

when j ¼ 1 we obtain:

ui1 ¼ � vi1 ¼
bi�1h

L

�
li�1hþ Ln

�
nkþ1
nk

�� for i¼2;3; :::;mþ 1 (40)

The approximation for the delayed neutron precursor concen-
trations using Eq. (37) will be replaced into Eq. (21) for the calcu-
lation of classical reactivity rclass and into Eq. (23) for the calculation
of the P1 point reactor kinetic reactivity rp1.
5. Results

Next, the numerical results for the calculation of the P1 point
kinetic reactivity rp1 from Eq. (23) are presented using the method
presented on the previous section. All numerical computations are
performed for different simulation times t(s), L ¼ 2� 10�5s, y ¼
5� 105cm=s, Sa ¼ 1:39� 10�2cm�1, t ¼ 6� 10�5s. The maximum
difference in reactivity between two variables X and Y will be
denoted as MaxjX � Yj, being jX�Yj the absolute value of the dif-
ference between X and Y. The computation is realized using the
proposed method given by Eq. (21) and Eq. (23) for classical reac-
tivity (rclass) and the P1 point reactor kinetic reactivity (rp1),
respectively. And the reference method is given by the analytical
solution of these equations and in order to differentiate them they
are denoted as rclass ref and rp1 ref . For the different numerical
computations, the dominant term in Eq. (23) is associated with the
precursor concentration term. As there are two terms, the term
with the highest domain being the term associated with the clas-
sical reactivity. Assuming that the form for neutron density is
known nðtÞ, therefore the first and second derivatives are known
and calculated analytically, i.e., they are not calculated numerically,
ensuring that the comparison is made under the same conditions,
depending exclusively on precision of the method and its validity
according to the shape of the neutron density. Six groups of delayed
neutron precursors (m ¼ 6) were considered and also the nuclear
parameters shown on Table 1 which are typical for a classical
reactivity.

In order to study the accuracy in the calculation of reactivity, the
following numerical computationswere performed considering the
case of a neutron density represented by nðtÞ ¼ ewt, with different
values for w, and time steps of h ¼ 1s and h ¼ 1:5s respectively.

Tables 2 and 3 show the maximum difference in pcm between
classical reactivity (rclass) -using the matrix formulation method-
Table 1
Kinetics parameters for the simulation.

Groups l iðs�1Þ b i

1 0.0127 0.000266
2 0.0317 0.001491
3 0.115 0.001316
4 0.311 0.002849
5 1.400 0.000896
6 3.870 0.000182
LðsÞ 2:0� 10�5

b 0.007

Saðcm�1Þ 1:39� 10�2

D ðcmÞ 10
y ðcm =sÞ 5� 105

t ðsÞ 6� 10�5
and the reference reactivity (rclass ref ) calculated exactly by Eq. (21),
also shown, the maximum difference in pcm between the P1 point
reactor kinetic reactivity (rp1) using the matrix formulation method
and the reference P1 point reactor kinetic reactivity (rp1 ref ) calcu-
lated exactly using Eqs. 23e25. The source term (dsðtÞ=dt) has an
important effect on the results obtained since the absence of a
neutron source for this form of neutron density implies amaximum
difference of 1:83� 10�2pcm.

In order to analyze the differences between the classic reactivity
and the P1 point kinetic reactivity, the following numerical com-
putations are performed. Table 4 shows values obtained for the
maximum difference between the classical reactivity and the P1
point kinetic reactivity for a time step of h ¼ 1s. The differences may
increase depending on the value w, for w ¼ 52:80352s�1 the
maximum difference is close to 270pcm with a source term and
44:4pcmwithout a source term. Fig. 1 shows the reactivity obtained
by an exponential form nðtÞ ¼ ewt for the neutron density withw ¼
0:12353 and h ¼ 1s, where the maximum difference is close to
0:6pcmwith a source term and 0:1pcmwithout a source term. Fig. 2
shows the reactivity obtained with the same exponential shape for
the neutron density, but with a higher value of w ¼ 11:6442 and a
time step h ¼ 0:1s, the maximum difference reached a value of
59:6pcm with a source term and 9:7pcm without a source term.
Apparently, this difference is not as important in the time domain,
however, in the development of control strategies, the source term
is crucial in the stability of the system as previously demonstrated
[18].

The differences presented occur from a time Dt very close to the
initial time value where the reactor is critical, from equation (26) it
is obtained rp1

ðDtÞzrclassðDtÞþ t rncðDtÞ, the classic reactivity is
given by rclassðDtÞzLw.

Now, for the case without a source
rp1

ðDtÞzLwþ t½Lw2 þ LySaw� and with a source rp1
ðDtÞzLwþ

t½Lw2 þ LySaw � ð1 � bÞw�, considering the value ofw ¼ 11:6442
it is obtained rclassðDtÞzLw ¼ 23:29 pcm, rp1

ðDtÞz23:29þ 9:73 ¼
33:02 pcm and rp1

ðDtÞz23:29� 59:65 ¼ �36:36 pcm for the cases
of no source and source, respectively, the differences��rp1

ðDtÞ�rclassðDtÞ
��zt rncðDtÞ are 9:73 pcm and 59:65 pcm for the

case without a source and the case with a source, respectively. These
differences foundwithin a timeDt, keeps almost constant during the
whole simulation time.

It is important to point out that these differences in the calcu-
lation of reactivity may still increase, since the P1 point kinetic
reactivity is proportional to the relaxation time t given in Eq. (26).
The contribution for the case considered in this article is a factor of
6, whether or not the source term is considered. Such high differ-
ences are due to the exponential shape of the neutron density, the
changes of the first and second derivatives divided respectively by
the neutron density can increase significantly.

Another numerical computation is to consider the linear form
for the neutron density. Table 5 shows the maximum differences in
reactivity for a neutron density described by nðtÞ ¼ aþ bt, with a
time step of h ¼ 3s, t ¼ 1000 s, the parameter a ¼ 50 and different
values for b. For the classical and P1 point kinetic reactivity form we
observe that the matrix formulation method maintains the same
precision for the different values of b, the precision for the classical
and P1 point kinetic reactivities is 10�13. Again, when the neutron
source term is considered for this form of neutron density, the same
maximum difference of 1:83� 10�2pcm is obtained.

In the next numerical computation the neutron density is given
by nðtÞ ¼ aþ bt3, where t ¼ 10 s, h ¼ 0:1s and a ¼ 1, the results
are shown on Table 6 for a given value of b. There are changes for
both methods (the classical and P1 point kinetic reactivity). When
b ¼ ð0:0127Þ4=4, the matrix formulation maintains a precision of
1:22� 10�7pcm. With the source term, it provides an equal



Table 2
Maximum differences in reactivity in pcm for nðtÞ ¼ expðwtÞ with h ¼ 1s.

Max
���rclass �rclass ref

��� (pcm) Max
���rP1 �rp1 ref

��� (pcm)

w ðs�1Þ tðsÞ MF MF With source term dsðtÞ=dt MF Without source term

0.00243 1000 5.19� 10�13 5.19 � 10�13 1.83 � 10�2

0.01046 800 6.96� 10�13 6.96� 10�13 1.82 � 10�2

0.02817 600 9.38� 10�13 9.38 � 10�13 1.80 � 10�2

0.12353 50 2.84� 10�13 2.84 � 10�13 1.70 � 10�2

1.00847 100 7.96� 10�14 7.96� 10�14 1.08 � 10�2

1.023 100 6.82� 10�13 6.82 � 10�13 1.08 � 10�2

1.5 10 0 0 8.83 � 10�3

2.345 80 7.96� 10�13 7.96 � 10�13 6.66 � 10�3

11.6442 10 0 0 2.00 � 10�3

52.80352 10 0 0 5.16 � 10�4

Table 3
Maximum differences in reactivity in pcm for nðtÞ ¼ expðwtÞ with h ¼ 1:5s.

Max
���rclass �rclass ref

��� (pcm) Max
���rP1 �rp1 ref

��� (pcm)

w ðs�1Þ t ðsÞ MF MF With source term dsðtÞ=dt MF Without source term

0.00243 1000 6.08� 10�13 6.08 � 10�13 1.82 � 10�2

0.01046 800 6.96� 10�13 6.96 � 10�13 1.81 � 10�2

0.02817 600 8.81� 10�13 8.81 � 10�13 1.79 � 10�2

0.12353 50 3.41� 10�13 3.41 � 10�13 1.67 � 10�2

1.00847 100 6.82� 10�13 6.82 � 10�13 9.94 � 10�3

1.023 100 4.55� 10�13 4.55 � 10�13 9.88 � 10�3

1.5 10 1.14� 10�13 1.14 � 10�13 8.11 � 10�3

2.345 80 3.41� 10�13 3.41 � 10�13 6.25 � 10�3

11.6442 10 0 0 2.00 � 10�3

52.80352 10 0 0 5.16 � 10�4

Table 4
Maximum differences between classical reactivity and P1 point kinetic reactivity in pcm for nðtÞ ¼ expðwtÞ with h ¼ 1s.

MaxjrP1 � rclassj
ðpcmÞ

w ðs�1Þ t ðsÞ MF With source term dsðtÞ=dt MF Without source term

0.00243 1000 1.26� 10�2 2.03� 10�3

0.01046 800 5.40� 10�2 8.72� 10�3

0.02817 600 1.45� 10�1 2.35� 10�2

0.12353 50 6.36� 10�1 1.03� 10�1

1.00847 100 5.18� 100 8.41� 10�1

1.023 100 5.25� 100 8.53� 10�1

1.5 10 7.70� 100 1.25� 100

2.345 80 1.20� 101 1.96� 100

11.6442 10 5.97� 101 9.73� 100

52.80352 10 2.70� 102 4.44� 101
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difference to the numerical computations previously performed
when the matrix formulation is used. Again, when the term of the
neutron source is considered, the same difference of 1:83�
10�2pcm is obtained. We conclude that the formulation method
(FM) presents high precision for these type of neutron densities.

For a neutron population density represented by nðtÞ ¼ aþ bt4,
when a ¼ 1, h ¼ 3s and t ¼ 1800 s. Table 7 shows that the matrix
formulation has goods results. Fig. 3 shows the difference between
calculating the classical reactivity represented by Eq. (21) using the
matrix formulation method given by Eq. (37) and the reference
method which is the analytical solution of classical reactivity and
the P1 point kinetic reactivity, assuming the form of the neutron
density is known. Now, without the source term the maximum
difference obtained is equivalent to the previous numerical com-
putations of 1:83� 10�2pcm when the matrix formulation (MF) is
used. It can be inferred that the classical reactivity term is dominant
over the P1 point kinetic reactivity term.

Table 8 shows the results obtained in the calculation of
reactivity with the neutron density described by the hyperbolic
function nðtÞ ¼ aþ coshðktÞ and nðtÞ ¼ aþ sinhðktÞ, with h ¼ 5s
and h ¼ 20s. For the matrix formulation (MF), the classical reac-
tivity and P1 point kinetic reactivity show better precision. This
makes evident that for a density of the proposed form, the more
precise method to calculate the classical reactivity, as well as for P1
point kinetic reactivity, is the matrix formulation (MF). However,
without source term it provides an almost constant difference with
respect to the numerical computations presented previously.

According to the previous results, the matrix formulation (MF)
has the same error order for different neutron density shapes. The
matrix formulation is also very precise in calculating the maximum
differences for the P1 point kinetic reactivity.

In practice, the neutron density is known since it is provided by
the different detectors. This signal can be simulated as a step
function with some jump given by a Gaussian distribution with a
mean m and a standard deviation, s, if the jumps are given with
much standard deviation, the method may have drawbacks and



Fig. 1. Comparison of between classical reactivity and the P1 point kinetic reactivity for nðtÞ ¼ expð0:12353tÞ with h ¼ 1s.

Fig. 2. Comparison of between classical reactivity and the P1 point kinetic reactivity for nðtÞ ¼ expð11:6442tÞ with h ¼ 0:1s.
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some filter should be used first to decrease these fluctuations in
neutron density.
6. Conclusions

A new method to calculate reactivity from the approximation
based on the P1 point reactor model is introduced in this work. This



Table 5
Maximum differences in reactivity in pcm for nðtÞ ¼ aþ bt with a ¼ 50 and t ¼ 10s, different values for the factor band h ¼ 3s.

Max
���rclass �rclass ref

��� (pcm) Max
���rP1 �rp1 ref

��� (pcm)

b MF MF With source term dsðtÞ=dtMF Without source term

0:01275= 9 7.81 � 10�13 7.81 � 10�13 1.83 � 10�2

0:01274=
40

6.07� 10�13 6.07 � 10�13 1.83 � 10�2

0:01274= 4 3.47� 10�13 3.47 � 10�13 1.83 � 10�2

Table 6
Maximum differences in reactivity in pcm for nðtÞ ¼ aþ bt3 with a ¼ 1 and t ¼ 10s, different values for the factor b and h¼3s.

Max
���rclass �rclass ref

��� (pcm) Max
���rP1 �rp1 ref

��� (pcm)

b MF MF With source term dsðtÞ=dt MF Without source term

0:01275= 9 6.87 � 10�10 6.87 � 10�10 1.83 � 10�2

0:01274=
40

1.22 � 10�8 1.22 � 10�8 1.83 � 10�2

0:01274= 4 1.22 � 10�7 1.22 � 10�7 1.83 � 10�2

Table 7
Maximum differences in reactivity in pcm for nðtÞ ¼ aþ bt4 with a ¼ 1, t ¼ 1800s different values for the factor b and h¼3s.

Max
���rclass �rclass ref

��� (pcm) Max
���rP1 �rp1 ref

��� (pcm)

b MF MF With source term dsðtÞ=dt MF Without source term

0:01275= 9 1.02 � 10�2 1.02 � 10�2 2.83 � 10�2

0:01274=
40

4.05 � 10�2 4.05 � 10�2 5.86 � 10�2

0:01274= 4 1.20 � 10�1 1.20 � 10�1 1.38 � 10�1

Fig. 3. Comparison in reactivity for nðtÞ ¼ aþ bt4 with a ¼ 1, b ¼ 0:01274=4 , t ¼ 600s and h ¼ 3s.
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new form is presented as a function of classical reactivity and a
non-classical term that depends on the product between the time
of relaxation and the time derivative of the neutron source. To
perform the numerical simulations, the equations were solved
using the matrix formulation method due to its high precision for
different forms of neutron density. The numerical results show that
there can be large differences if the shape of the neutron density is
exponential or if the relaxation time increases.



Table 8
Maximum differences of the reactivity in pcm for neutron densities with hyperbolic form with different time steps.

Max
���rclass �rclass ref

��� (pcm) Max
���rP1 �rp1 ref

��� (pcm)

nðtÞ a k ðs�1Þ tðsÞ hðsÞ MF MF With source term dsðtÞ=dt MF Without source term

aþ
coshðktÞ

100 p=180 180 5 3.21� 10�2 5.32� 10�2 7.14� 10�2

aþ sinhðktÞ 100 1.27� 10�3 10,000 20 6.70� 10�3 2.38� 10�2 4.21� 10�2
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