DOI QR코드

DOI QR Code

Adaptive time-step control for modal methods to integrate the neutron diffusion equation

  • Carreno, A. (Instituto Universitario de Seguridad Industrial, Radiofisica y Medioambiental, Universitat Politecnica de Valencia) ;
  • Vidal-Ferrandiz, A. (Instituto Universitario de Seguridad Industrial, Radiofisica y Medioambiental, Universitat Politecnica de Valencia) ;
  • Ginestar, D. (Instituto Universitario de Matematica Multidisciplinar, Universitat Politecnica de Valencia) ;
  • Verdu, G. (Instituto Universitario de Seguridad Industrial, Radiofisica y Medioambiental, Universitat Politecnica de Valencia)
  • Received : 2020.03.24
  • Accepted : 2020.07.06
  • Published : 2021.02.25

Abstract

The solution of the time-dependent neutron diffusion equation can be approximated using quasi-static methods that factorise the neutronic flux as the product of a time dependent function times a shape function that depends both on space and time. A generalization of this technique is the updated modal method. This strategy assumes that the neutron flux can be decomposed into a sum of amplitudes multiplied by some shape functions. These functions, known as modes, come from the solution of the eigenvalue problems associated with the static neutron diffusion equation that are being updated along the transient. In previous works, the time step used to update the modes is set to a fixed value and this implies the need of using small time-steps to obtain accurate results and, consequently, a high computational cost. In this work, we propose the use of an adaptive control time-step that reduces automatically the time-step when the algorithm detects large errors and increases this value when it is not necessary to use small steps. Several strategies to compute the modes updating time step are proposed and their performance is tested for different transients in benchmark reactors with rectangular and hexagonal geometry.

Keywords

Acknowledgement

This work has been partially supported by Spanish Ministerio de Economia y Competitividad under projects ENE2017-89029-P and MTM2017-85669-P and financed with the help of a Primeros Proyectos de Investigacion (PAID-06-18) from Vicerrectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia.

References

  1. A. Vidal-Ferrandiz, R. Fayez, D. Ginestar, G. Verdu, Solution of the lambda modes problem of a nuclear power reactor using an h-p finite element method, Ann. Nucl. Energy 72 (2014) 338-349. https://doi.org/10.1016/j.anucene.2014.05.026
  2. W. Stacey, Space-time Nuclear Reactor Kinetics, vol. 5, Academic Press, 1969.
  3. K. Ott, D. Meneley, Accuracy of the quasistatic treatment of spatial reactor kinetics, Nucl. Sci. Eng. 36 (3) (1969) 402-411. https://doi.org/10.13182/NSE36-402
  4. S. Dulla, P. Ravetto, M. Rostagno, Neutron kinetics of fluid-fuel systems by the quasi-static method, Ann. Nucl. Energy 31 (15) (2004) 1709-1733. https://doi.org/10.1016/j.anucene.2004.05.004
  5. S. Dulla, E. Mund, P. Ravetto, The quasi-static method revisited, Prog. Nucl. Energy 50 (8) (2008) 908-920. https://doi.org/10.1016/j.pnucene.2008.04.009
  6. A. Henry, N. Curlee, Verification of a method for treating neutron space-time problems, Nucl. Sci. Eng. 4 (6) (1958) 727-744. https://doi.org/10.13182/NSE4-727
  7. J. McFadden, Solution of the Space-Time Dependent Neutron Kinetics Equations for a Reflected Slab Reactor, Ph.D. thesis, Iowa State University, 1968.
  8. A. Henry, Nuclear-reactor Analysis, vol. 4, MIT press Cambridge, Massachusetts, 1975.
  9. R. Miro, D. Ginestar, G. Verdu, D. Hennig, A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis, Ann. Nucl. Energy 29 (10) (2002) 1171-1194. https://doi.org/10.1016/S0306-4549(01)00103-7
  10. A. Carreno, A. Vidal-Ferrandiz, D. Ginestar, G. Verdu, Modal methods for the neutron diffusion equation using different spatial modes, Prog. Nucl. Energy 115 (2019) 181-193. https://doi.org/10.1016/j.pnucene.2019.03.040
  11. D. Ginestar, G. Verdu, V. Vidal, R. Bru, J. Marin, J. Munoz-Cobo, High order backward discretization of the neutron diffusion equation, Ann. Nucl. Energy 25 (1-3) (1998) 47-64. https://doi.org/10.1016/S0306-4549(97)00046-7
  12. K. Gustafsson, M. Lundh, G. Soderlind, Api stepsize control for the numerical solution of ordinary differential equations, BIT Numerical Mathematics 28 (2) (1988) 270-287. https://doi.org/10.1007/BF01934091
  13. G. Wanner, E. Hairer, Solving Ordinary Differential Equations II, Springer Berlin Heidelberg, 1996.
  14. G. Soderlind, Automatic control and adaptive time-stepping, Numer. Algorithm. 31 (1-4) (2002) 281-310. https://doi.org/10.1023/A:1021160023092
  15. C. Shim, Y. Jung, J. Yoon, H. Joo, Application of backward differentiation formula to spatial reactor kinetics calculation with adaptive time step control, Nucl. Eng.Technol 43 (6) (2011) 531-546. https://doi.org/10.5516/NET.2011.43.6.531
  16. A. Avvakumov, V. Strizhov, P. Vabishchevich, A. Vasilev, Automatic time step selection for numerical solution of neutron diffusion problems, in: International Conference on Finite Difference Methods, Springer, 2018, pp. 145-152.
  17. J. Boffie, J. Pounders, An adaptive time step control scheme for the transient diffusion equation, Ann. Nucl. Energy 116 (2018) 280-289. https://doi.org/10.1016/j.anucene.2018.02.044
  18. Y. Cai, X. Peng, Q. Li, K. Wang, X. Qin, R. Guo, The numerical solution of spacedependent neutron kinetics equations in hexagonal-z geometry using backward differentiation formula with adaptive step size, Ann. Nucl. Energy 128 (2019) 203-208. https://doi.org/10.1016/j.anucene.2019.01.004
  19. D. Caron, S. Dulla, P. Ravetto, Adaptive time step selection in the quasi-static methods of nuclear reactor dynamics, Ann. Nucl. Energy 105 (2017) 266-281. https://doi.org/10.1016/j.anucene.2017.03.009
  20. A. Vidal-Ferr andiz, A. Carreno, D. Ginestar, G. Verdu, A block arnoldi method ~ for the spn equations, Int. J. Comput. Math. (2019) 1-17.
  21. M. Kronbichler, K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluid 63 (2012) 135-147. https://doi.org/10.1016/j.compfluid.2012.04.012
  22. A. Seubert, K. Velkov, TORT-TD transient simulations of the C5G7-TD benchmark, in: M & C 2017, KNS, 2017, pp. 1-7.
  23. W. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2007.
  24. A. Vidal-Ferrandiz, R. Fayez, D. Ginestar, G. Verdu, Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry, J. Comput. Appl. Math. 291 (2016) 197-208. https://doi.org/10.1016/j.cam.2015.03.040
  25. W. Bangerth, R. Hartmann, K. G, Deal.II - a general purpose object oriented finite element library, ACM Trans. Math Software 33 (4) (2007) 24/1-24/27.
  26. G. Verdu, D. Ginestar, V. Vidal, J. Munoz-Cobo, A consistent multidimensional nodal method for transient calculations, Ann. Nucl. Energy 22 (6) (1995) 395-410. https://doi.org/10.1016/0306-4549(94)00067-O
  27. A. Keresztri, M. Telbisz, Dynamic Benchmark 1, 2009 [Dyn001.doc], http://aerbench.kfki.hu/aerbench/.
  28. T. Downar, D. Lee, Y. Xu, T. Kozlowski, J. Staudenmier, Parcs V2. 6 Us Nrc Core Neutronics Simulator Theory Manual, School of Nuclear Engineering Purdue University.
  29. H.S. Joo, Resolution of the Control Rod Cusping Problem for Nodal Methods, Ph.D. thesis, Department of Nuclear Engineering, MIT, Cambridge, MA, USA, 1984.
  30. J. Gehin, A Quasi-Static Polynomial Nodal Method for Nuclear Reactor Analysis, Tech. Rep., Oak Ridge Inst. for Science and Education, TN (United States); Massachusetts, 1992.
  31. A. Yamamoto, A simple and efficient control rod cusping model for three-dimensional pin-by-pin core calculations, Nucl. Technol. 145 (1) (2004) 11-17. https://doi.org/10.13182/NT145-11
  32. A. Dall'Osso, Reducing rod cusping effect in nodal expansion method calculations, in: Proceedings of the International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing, PHYSOR, 2002, pp. 1-13.
  33. S. Langenbuch, W. Maurer, W. Werner, Coarse-mesh flux-expansion method for the analysis of space-time effects in large light water reactor cores, Nucl. Sci. Eng. 63 (4) (1977) 437-456. https://doi.org/10.13182/NSE77-A27061
  34. A. Kereszturi, M. Telbisz, A three dimensional hexagonal kinetic benchmark problem, in: 2nd AER Symposium, Paks Hungary, 1992, pp. 1-20.
  35. A. Carreno, A. Vidal-Ferrandiz, D. Ginestar, G. Verdu, Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation, Ann. Nucl. Energy 121 (2018) 513-524. https://doi.org/10.1016/j.anucene.2018.08.010
  36. S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, et al., Petsc Users Manual: Revision 3.10, Tech. Rep., Argonne National Lab.(ANL), Argonne, IL (United States), 2018.
  37. Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 82, siam, 2003.
  38. K. Obaidurrahman, J. Doshi, R. Jain, V. Jagannathan, Development and validation of coupled dynamics code 'trikin' for vver reactors, Nucl. Eng.Technol 42 (3) (2010) 259-270. https://doi.org/10.5516/NET.2010.42.3.259