Acknowledgement
This work has been partially supported by Spanish Ministerio de Economia y Competitividad under projects ENE2017-89029-P and MTM2017-85669-P and financed with the help of a Primeros Proyectos de Investigacion (PAID-06-18) from Vicerrectorado de Investigacion, Innovacion y Transferencia of the Universitat Politecnica de Valencia.
References
- A. Vidal-Ferrandiz, R. Fayez, D. Ginestar, G. Verdu, Solution of the lambda modes problem of a nuclear power reactor using an h-p finite element method, Ann. Nucl. Energy 72 (2014) 338-349. https://doi.org/10.1016/j.anucene.2014.05.026
- W. Stacey, Space-time Nuclear Reactor Kinetics, vol. 5, Academic Press, 1969.
- K. Ott, D. Meneley, Accuracy of the quasistatic treatment of spatial reactor kinetics, Nucl. Sci. Eng. 36 (3) (1969) 402-411. https://doi.org/10.13182/NSE36-402
- S. Dulla, P. Ravetto, M. Rostagno, Neutron kinetics of fluid-fuel systems by the quasi-static method, Ann. Nucl. Energy 31 (15) (2004) 1709-1733. https://doi.org/10.1016/j.anucene.2004.05.004
- S. Dulla, E. Mund, P. Ravetto, The quasi-static method revisited, Prog. Nucl. Energy 50 (8) (2008) 908-920. https://doi.org/10.1016/j.pnucene.2008.04.009
- A. Henry, N. Curlee, Verification of a method for treating neutron space-time problems, Nucl. Sci. Eng. 4 (6) (1958) 727-744. https://doi.org/10.13182/NSE4-727
- J. McFadden, Solution of the Space-Time Dependent Neutron Kinetics Equations for a Reflected Slab Reactor, Ph.D. thesis, Iowa State University, 1968.
- A. Henry, Nuclear-reactor Analysis, vol. 4, MIT press Cambridge, Massachusetts, 1975.
- R. Miro, D. Ginestar, G. Verdu, D. Hennig, A nodal modal method for the neutron diffusion equation. Application to BWR instabilities analysis, Ann. Nucl. Energy 29 (10) (2002) 1171-1194. https://doi.org/10.1016/S0306-4549(01)00103-7
- A. Carreno, A. Vidal-Ferrandiz, D. Ginestar, G. Verdu, Modal methods for the neutron diffusion equation using different spatial modes, Prog. Nucl. Energy 115 (2019) 181-193. https://doi.org/10.1016/j.pnucene.2019.03.040
- D. Ginestar, G. Verdu, V. Vidal, R. Bru, J. Marin, J. Munoz-Cobo, High order backward discretization of the neutron diffusion equation, Ann. Nucl. Energy 25 (1-3) (1998) 47-64. https://doi.org/10.1016/S0306-4549(97)00046-7
- K. Gustafsson, M. Lundh, G. Soderlind, Api stepsize control for the numerical solution of ordinary differential equations, BIT Numerical Mathematics 28 (2) (1988) 270-287. https://doi.org/10.1007/BF01934091
- G. Wanner, E. Hairer, Solving Ordinary Differential Equations II, Springer Berlin Heidelberg, 1996.
- G. Soderlind, Automatic control and adaptive time-stepping, Numer. Algorithm. 31 (1-4) (2002) 281-310. https://doi.org/10.1023/A:1021160023092
- C. Shim, Y. Jung, J. Yoon, H. Joo, Application of backward differentiation formula to spatial reactor kinetics calculation with adaptive time step control, Nucl. Eng.Technol 43 (6) (2011) 531-546. https://doi.org/10.5516/NET.2011.43.6.531
- A. Avvakumov, V. Strizhov, P. Vabishchevich, A. Vasilev, Automatic time step selection for numerical solution of neutron diffusion problems, in: International Conference on Finite Difference Methods, Springer, 2018, pp. 145-152.
- J. Boffie, J. Pounders, An adaptive time step control scheme for the transient diffusion equation, Ann. Nucl. Energy 116 (2018) 280-289. https://doi.org/10.1016/j.anucene.2018.02.044
- Y. Cai, X. Peng, Q. Li, K. Wang, X. Qin, R. Guo, The numerical solution of spacedependent neutron kinetics equations in hexagonal-z geometry using backward differentiation formula with adaptive step size, Ann. Nucl. Energy 128 (2019) 203-208. https://doi.org/10.1016/j.anucene.2019.01.004
- D. Caron, S. Dulla, P. Ravetto, Adaptive time step selection in the quasi-static methods of nuclear reactor dynamics, Ann. Nucl. Energy 105 (2017) 266-281. https://doi.org/10.1016/j.anucene.2017.03.009
- A. Vidal-Ferr andiz, A. Carreno, D. Ginestar, G. Verdu, A block arnoldi method ~ for the spn equations, Int. J. Comput. Math. (2019) 1-17.
- M. Kronbichler, K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluid 63 (2012) 135-147. https://doi.org/10.1016/j.compfluid.2012.04.012
- A. Seubert, K. Velkov, TORT-TD transient simulations of the C5G7-TD benchmark, in: M & C 2017, KNS, 2017, pp. 1-7.
- W. Stacey, Nuclear Reactor Physics, John Wiley & Sons, 2007.
- A. Vidal-Ferrandiz, R. Fayez, D. Ginestar, G. Verdu, Moving meshes to solve the time-dependent neutron diffusion equation in hexagonal geometry, J. Comput. Appl. Math. 291 (2016) 197-208. https://doi.org/10.1016/j.cam.2015.03.040
- W. Bangerth, R. Hartmann, K. G, Deal.II - a general purpose object oriented finite element library, ACM Trans. Math Software 33 (4) (2007) 24/1-24/27.
- G. Verdu, D. Ginestar, V. Vidal, J. Munoz-Cobo, A consistent multidimensional nodal method for transient calculations, Ann. Nucl. Energy 22 (6) (1995) 395-410. https://doi.org/10.1016/0306-4549(94)00067-O
- A. Keresztri, M. Telbisz, Dynamic Benchmark 1, 2009 [Dyn001.doc], http://aerbench.kfki.hu/aerbench/.
- T. Downar, D. Lee, Y. Xu, T. Kozlowski, J. Staudenmier, Parcs V2. 6 Us Nrc Core Neutronics Simulator Theory Manual, School of Nuclear Engineering Purdue University.
- H.S. Joo, Resolution of the Control Rod Cusping Problem for Nodal Methods, Ph.D. thesis, Department of Nuclear Engineering, MIT, Cambridge, MA, USA, 1984.
- J. Gehin, A Quasi-Static Polynomial Nodal Method for Nuclear Reactor Analysis, Tech. Rep., Oak Ridge Inst. for Science and Education, TN (United States); Massachusetts, 1992.
- A. Yamamoto, A simple and efficient control rod cusping model for three-dimensional pin-by-pin core calculations, Nucl. Technol. 145 (1) (2004) 11-17. https://doi.org/10.13182/NT145-11
- A. Dall'Osso, Reducing rod cusping effect in nodal expansion method calculations, in: Proceedings of the International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High-Performance Computing, PHYSOR, 2002, pp. 1-13.
- S. Langenbuch, W. Maurer, W. Werner, Coarse-mesh flux-expansion method for the analysis of space-time effects in large light water reactor cores, Nucl. Sci. Eng. 63 (4) (1977) 437-456. https://doi.org/10.13182/NSE77-A27061
- A. Kereszturi, M. Telbisz, A three dimensional hexagonal kinetic benchmark problem, in: 2nd AER Symposium, Paks Hungary, 1992, pp. 1-20.
- A. Carreno, A. Vidal-Ferrandiz, D. Ginestar, G. Verdu, Block hybrid multilevel method to compute the dominant λ-modes of the neutron diffusion equation, Ann. Nucl. Energy 121 (2018) 513-524. https://doi.org/10.1016/j.anucene.2018.08.010
- S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. Gropp, et al., Petsc Users Manual: Revision 3.10, Tech. Rep., Argonne National Lab.(ANL), Argonne, IL (United States), 2018.
- Y. Saad, Iterative Methods for Sparse Linear Systems, vol. 82, siam, 2003.
- K. Obaidurrahman, J. Doshi, R. Jain, V. Jagannathan, Development and validation of coupled dynamics code 'trikin' for vver reactors, Nucl. Eng.Technol 42 (3) (2010) 259-270. https://doi.org/10.5516/NET.2010.42.3.259