DOI QR코드

DOI QR Code

Innovative modeling of tuned liquid column damper controlled structures

  • Di Matteo, Alberto (Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Universita degli Studi di Palermo) ;
  • Di Paola, Mario (Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Universita degli Studi di Palermo) ;
  • Pirrotta, Antonina (Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Universita degli Studi di Palermo)
  • Received : 2015.09.26
  • Accepted : 2016.05.06
  • Published : 2016.07.25

Abstract

In this paper a different formulation for the response of structural systems controlled by Tuned Liquid Column Damper (TLCD) devices is developed, based on the mathematical tool of fractional calculus. Although the increasing use of these devices for structural vibration control, it has been demonstrated that existing model may lead to inaccurate prediction of liquid motion, thus reflecting in a possible imprecise description of the structural response. For this reason the recently proposed fractional formulation introduced to model liquid displacements in TLCD devices, is here extended to deal with TLCD controlled structures under base excitations. As demonstrated through an extensive experimental analysis, the proposed model can accurately capture structural responses both in time and in frequency domain. Further, the proposed fractional formulation is linear, hence making identification of the involved parameters extremely easier.

Keywords

References

  1. Chaiviriyawong, P., Webster, W.C., Pinkaew, T. and Lukkunaprasit, P. (2007), "Simulation of characteristics of tuned liquid column damper using a potential-flow method", Eng. Struct., 29, 132-144. https://doi.org/10.1016/j.engstruct.2006.04.021
  2. Cheng, C.W., Lee, H.H. and Luo, Y.T. (2015), "Experimental study of controllable MR-TLCD applied to the mitigation of structure vibration", Smart. Struct. Syst., 15, 1481-1501. https://doi.org/10.12989/sss.2015.15.6.1481
  3. Di Matteo, A., Lo Iacono, F., Navarra, G. and Pirrotta, A. (2014a), "Direct evaluation of the equivalent linear damping for TLCD systems in random vibration for pre-design purposes", Int. J. Nonlinear. Mech., 63, 19-30. https://doi.org/10.1016/j.ijnonlinmec.2014.03.009
  4. Di Matteo, A., Lo Iacono, F., Navarra, G. and Pirrotta, A. (2014b), "Experimental validation of a direct pre-design formula for TLCD", Eng. Struct., 75, 528-538. https://doi.org/10.1016/j.engstruct.2014.05.045
  5. Di Matteo, A., Lo Iacono, F., Navarra, G. and Pirrotta, A. (2015a), "Optimal tuning of tuned liquid column damper systems in random vibration by means of an approximate formulation", Meccanica, 50, 795-808. https://doi.org/10.1007/s11012-014-0051-6
  6. Di Matteo, A., Lo Iacono, F., Navarra, G. and Pirrotta, A. (2015b), "Innovative modeling of tuned liquid column damper motion", Commun. Nonlinear Sci. Numer. Simulat., 23, 229-244. https://doi.org/10.1016/j.cnsns.2014.11.005
  7. Ewins, D.J. (1984), Modal Testing: Theory And Practice, Research Studies Press, Taunton, Somerset, England.
  8. Failla, G. and Pirrotta, A. (2012), "On the stochastic response of fractionally-damped Duffing oscillator", Commun. Nonlinear Sci. Numer. Simulat., 17, 5131-5142. https://doi.org/10.1016/j.cnsns.2012.03.033
  9. Hitchcock, P.A., Kwok, K.C.S. and Watkins, R.D. (1997), "Characteristics of liquid column vibration absorbers (LCVA) - I", Eng. Struct., 19, 126-134. https://doi.org/10.1016/S0141-0296(96)00042-9
  10. Hochrainer, M.J. and Ziegler, F. (2006), "Control of tall building vibrations by sealed tuned liquid column dampers", Struct. Control. Health Monit., 13, 980-1002. https://doi.org/10.1002/stc.90
  11. Ibrahim, R.A. (2005), Liquid Sloshing Dynamics Theory And Applications, Cambridge University Press, New York, NY, USA.
  12. Konar, T. and Ghosh, A. (2013), "Bimodal vibration control of seismically excited structures by the liquid column vibration absorbers", J. Vib. Control., 19, 385-394 https://doi.org/10.1177/1077546311430718
  13. Lee, S.K., Lee, H.R. and Min, K.W. (2012), "Experimental verification on nonlinear dynamic characteristic of a tuned liquid column damper subjected to various excitation amplitudes", Struct. Des. Tall Spec. Build., 21, 374-388. https://doi.org/10.1002/tal.606
  14. Lee, H.H. and Juang, H.H. (2012), "Experimental study on the vibration mitigation of offshore tension leg platform system with UWTLCD", Smart. Struct. Syst., 9, 71-104. https://doi.org/10.12989/sss.2012.9.1.071
  15. Maia, N.M.M. and Silva, J.M.M. (1997), Theoretical And Experimental Modal Analysis, Research Studies Press Ltd., John Wiley & Sons, New York, NY, USA.
  16. Podlubny, I. (1999), Fractional Differential Equations. An Introduction To Fractional Derivatives, Fractional Differential Equations, Some Methods Of Their Solution And Some Of Their Applications, Academic Press, New York, NY, USA.
  17. Sakai, F., Takeda, S. and Tamaki, T. (1989), "Tuned liquid column damper - new type device for suppression of building vibrations", Proceedings of the International Conference on Highrise Buildings.
  18. Spanos, P.D. and Evangelatos, G.I. (2010), "Response of a non-linear system with restoring forces governed by fractional derivatives-time domain simulation and statistical linearization solution", Soil Dyn. Earthq. Eng., 30, 811-821. https://doi.org/10.1016/j.soildyn.2010.01.013
  19. Wu, J.C., Chang, C.H. and Lin, Y.Y. (2009), "Optimal design of non-uniform tuned liquid column dampers in horizontal motion", J. Sound Vib., 326, 104-122. https://doi.org/10.1016/j.jsv.2009.04.027
  20. Wu, J.C., Shih, M.H., Lin, Y.Y. and Shen, Y.C. (2005), "Design guidelines for tuned liquid column dampers for structures responding to wind", Eng. Struct., 27, 1893-905. https://doi.org/10.1016/j.engstruct.2005.05.009
  21. Wu, J.C., Wang, Y.P. and Chen, Y.H. (2012), "Design tables and charts for uniform and non-uniform tuned liquid column dampers in harmonic pitching motion", Smart. Struct. Syst., 9, 165-188. https://doi.org/10.12989/sss.2012.9.2.165
  22. Yalla, S.K. and Kareem, A. (2000), "Optimum absorber parameters for tuned liquid column dampers", J. Struct. Eng. - ASCE, 126, 906-915. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:8(906)
  23. Ziegler, F. (2007), "The tuned liquid column damper as a cost-effective alternative for the mechanical damper in civil engineering structures", J. Acoust. Vib., 12, 25-39.
  24. Ziegler, F. (2008), "Special design of tuned liquid column-gas dampers for the control of spatial structural vibrations", Acta Mech., 201, 249-267. https://doi.org/10.1007/s00707-008-0062-2

Cited by

  1. Combining TMD and TLCD: analytical and experimental studies vol.167, 2017, https://doi.org/10.1016/j.jweia.2017.04.010
  2. Optimal design of tuned liquid column dampers for seismic response control of base-isolated structures 2017, https://doi.org/10.1007/s00707-017-1980-7
  3. Fractional viscoelastic behaviour under stochastic temperature process 2017, https://doi.org/10.1016/j.probengmech.2017.06.005
  4. Incomplete data based parameter identification of nonlinear and time-variant oscillators with fractional derivative elements vol.94, 2017, https://doi.org/10.1016/j.ymssp.2017.03.004
  5. An Implicit Hybrid Method for Solving Fractional Bagley-Torvik Boundary Value Problem vol.6, pp.7, 2018, https://doi.org/10.3390/math6070109
  6. Seismic control of structures using sloped bottom tuned liquid dampers vol.64, pp.2, 2017, https://doi.org/10.12989/sem.2017.64.2.233
  7. Model-order reduction of lumped parameter systems via fractional calculus vol.419, pp.None, 2016, https://doi.org/10.1016/j.jsv.2018.01.011
  8. Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation vol.441, pp.None, 2016, https://doi.org/10.1016/j.jsv.2018.10.051
  9. Annular Cylindrical Liquid Column Dampers for Control of Structural Vibrations vol.43, pp.3, 2019, https://doi.org/10.1007/s40996-018-00228-w
  10. Equivalent mechanical model of rectangular container attached to a pendulum compared to experimental data and analytical solution vol.42, pp.3, 2020, https://doi.org/10.1007/s40430-020-2232-7
  11. Experimental comparison of nonlinear damping performance of toroidal and conventional tuned liquid column dampers vol.104, pp.4, 2016, https://doi.org/10.1007/s11071-021-06552-7
  12. Deterministic and Random Vibration of Linear Systems with Singular Parameter Matrices and Fractional Derivative Terms vol.147, pp.6, 2016, https://doi.org/10.1061/(asce)em.1943-7889.0001937