• Title/Summary/Keyword: Model following control

Search Result 930, Processing Time 0.028 seconds

The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats

  • Erdogan, Hakan;Tuncdemir, Matem;Kelten, Bilal;Akdemir, Osman;Karaoglan, Alper;Tasdemiroglu, Erol
    • Journal of Korean Neurosurgical Society
    • /
    • v.57 no.6
    • /
    • pp.445-454
    • /
    • 2015
  • Objective : In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods : Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results : In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion : We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats.

Effect of Pioglitazone on Perihematomal Edema in Intracerebral Hemorrhage Mouse Model by Regulating NLRP3 Expression and Energy Metabolism

  • Kim, Hoon;Lee, Jung Eun;Yoo, Hyun Ju;Sung, Jae Hoon;Yang, Seung Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.6
    • /
    • pp.689-697
    • /
    • 2020
  • Objective : Cerebral edema is the predominant mechanism of secondary inflammation after intracerebral hemorrhage (ICH). Pioglitazone, peroxisome proliferator-activated receptor gamma agonist has been shown to play a role in regulation of central nervous system inflammation. Here, we examined the pharmacological effects of pioglitazone in an ICH mouse model and investigated its regulation on NLRP3 inflammasome and glucose metabolism. Methods : The ICH model was established in C57 BL/6 mice by the stereotactical inoculation of blood (30 µL) into the right frontal lobe. The treatment group was administered i.p. pioglitazone (20 mg/kg) for 1, 3, and 6 days. The control group was administered i.p. phosphate-buffered saline for 1, 3, and 6 days. We investigated brain water contents, NLRP3 expression, and changes in the metabolites in the ICH model using liquid chromatography-tandem mass spectrometry. Results : On day 3, brain edema in the mice treated with pioglitazone was decreased more than that in the control group. Expression levels of NLRP3 in the ICH model treated with pioglitazone were decreased more than those of the control mice on days 3 and 7. The pioglitazone group showed higher levels of glycolytic metabolites than those in the ICH mice. Lactate production was increased in the ICH mice treated with pioglitazone. Conclusion : Our results demonstrated less brain swelling following ICH in mice treated with pioglitazone. Pioglitazone decreased NLRP3-related brain edema and increased anaerobic glycolysis, resulting in the production of lactate in the ICH mice model. NLRP3 might be a therapeutic target for ICH recovery.

Design of Trajectory Following Controller for Parafoil Airdrop System (패러포일 투하 시스템의 궤적 추종 제어기의 설계)

  • Yang, Bin;Choi, Sun-Young;Lee, Joung-Tae;Lim, Dong-Keun;Hwang, Chung-Won;Park, Seung-Yub
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.215-222
    • /
    • 2014
  • In this paper, parafoil airdrop system has been designed and analyzed. 6-degrees of freedom (6-DOF) model of the parafoil system is set up. Nonlinear model predictive control (NMPC) and Proportion integration differentiation (PID) methods were separately applied to adjust the flap yaw angle. Compared the results of setting time and overshoot time of yaw angle, it is found that the of yaw angle is more stable by using PID method. Then, trajectory following controller was designed based on the simulation results of trajectory following effects, which was carried out by using MATLAB. The lateral offset error of parafoil trajectory can be eliminated by its lateral deviation control. The later offset deviation reference was obtained by the interpolation of the current planning path. Moreover, using the designed trajectory, the trajectory following system was simulated by adding the wind disturbances. It is found that the simulation result is highly agreed with the designed trajectory, which means that wind disturbances have been eliminated with the change of yaw angle controlled by PID method.

Nonlinear Discrete-Time Reconfigurable Flight Control Systems Using Neural Networks (신경회로망을 이용한 이산 비선형 재형상 비행제어시스템)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.112-124
    • /
    • 2004
  • A neural network based adaptive reconfigurable flight controller is presented for a class of discrete-time nonlinear flight systems in the presence of variations of aerodynamic coefficients and control effectiveness decrease caused by control surface damage. The proposed adaptive nonlinear controller is developed making use of the backstepping technique for the angle of attack, sideslip angle, and bank angle command following without two time separation assumption. Feedforward multilayer neural networks are implemented to guarantee reconfigurability for control surface damage as well as robustness to the aerodynamic uncertainties. The main feature of the proposed controller is that the adaptive controller is developed under the assumption that all of the nonlinear functions of the discrete-time flight system are not known accurately, whereas most previous works on flight system applications even in continuous time assume that only the nonlinear functions of fast dynamics are unknown. Neural networks learn through the recursive weight update rules that are derived from the discrete-time version of Lyapunov control theory. The boundness of the error states and neural networks weight estimation errors is also investigated by the discrete-time Lyapunov derivatives analysis. To show the effectiveness of the proposed control law, the approach is i]lustrated by applying to the nonlinear dynamic model of the high performance aircraft.

Reconfigurable Flight Control Law Using Adaptive Neural Networks and Backstepping Technique (백스테핑기법과 신경회로망을 이용한 적응 재형상 비행제어법칙)

  • 신동호;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • A neural network based adaptive controller design method is proposed for reconfigurable flight control systems in the presence of variations in aerodynamic coefficients or control effectiveness decrease caused by control surface damage. The neural network based adaptive nonlinear controller is developed by making use of the backstepping technique for command following of the angle of attack, sideslip angle, and bank angle. On-line teaming neural networks are implemented to guarantee reconfigurability and robustness to the uncertainties caused by aerodynamic coefficients variations. The main feature of the proposed controller is that the adaptive controller is designed with assumption that not any of the nonlinear functions of the system is known accurately, whereas most of the previous works assume that only some of the nonlinear functions are unknown. Neural networks loam through the weight update rules that are derived from the Lyapunov control theory. The closed-loop stability of the error states is also investigated according to the Lyapunov theory. A nonlinear dynamic model of an F-16 aircraft is used to demonstrate the effectiveness of the proposed control law.

State Estimation and Control in a Network for Vehicle Platooning Control (차량 군집주행을 위한 제어 네트워크의 변수 추정 및 제어)

  • Choi, Jae-Weon;Fang, Tae-Hyun;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.8
    • /
    • pp.659-665
    • /
    • 2000
  • In this paper a platoon merging control system is considered as a remotely located system with state represented by a stochastic process. in the system it is common to encounter situations where a single decision maker controls a large number of subsystems and observation and control signals are sent over a communication channel with finite capacity and significant transmission delays. Unlike a classical estimation problem where the observation is a continuous process corrupted by additive noise there is a constraint that the observation must be coded and transmitted over a digital communication channel with fintie capacity. A recursive coder-estimator sequence is a state estimation scheme based on observations transmitted with finite communication capacity constraint. in this paper we introduce a stochastic model for the lead vehicle in a platoon of vehicles in a lane considering the angle between the road surface and a horizontal plane as a stochastic process. In order to merge two platoons the lead vehicle of the following platoon is controlled by a remote control station. Using the observation transmitted over communication channel the remote control station designs the feedback controller. The simulation results show that the intervehicle spacings and the deviations from the desired intervehicle spacing are well regulated.

  • PDF

Modeling and Motion Control of Mobile Robot for Lattice Type Welding

  • Jeon, Yang-Bae;Kim, Sang-Bong
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.83-93
    • /
    • 2002
  • This paper presents a motion control method and its simulation results of a mobile robot for a lattice type welding. Its dynamic equation and motion control methods for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven for following straight line or curve. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider control. For the torch slider control, the proportional-integral-derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the corner with range of 90$^{\circ}$ constrained to the welding speed. The proposed control methods are proved through simulation results and these results have proved that the mobile robot has enough ability to apply the lattice type welding line.

A Microscopic Traffic Simulation Model for Urban Network Performance Evaluation (도시 가로망시설 운영효율평가를 위한 모의실험 모형개발)

  • 하동익;오영태;정준하
    • Journal of Korean Society of Transportation
    • /
    • v.13 no.1
    • /
    • pp.185-203
    • /
    • 1995
  • The purpose of this paper is to develop a microscopic traffic simulation model which is able to both analyze and the evaluate signlaized urban network and to verify its usefulness in comparison with the other model which has alfeady been released. This simulation model adopts the General Motor's 5th model for car-following and introduces an unique lanechanging rule using acceptable gap. It analyzes single and dual-ring signal phases and generates detector information . So it could be applied to dynamic route guidance systems as wel as real time signal control systems. The results derived from Netsim and the observed data from the real network have been used to test the validit of the proposed model. The result of the test has shown that there are no significant differences between the NETSIM model and the proposed model in estimating travel speed and stopped delay. In optimum offset estimatin , it has shown the same results with NETSIM. the measure of effectiveness , however, derived from this model is slightly better than that of the real network situation. This may be due to the fact that the proposed model does not take into account side frictions from interferences and obstacles.

  • PDF

Framework of MANPro-based control for intelligent manufacturing systems (지능형 생산시스템의 MANPro기반 제어 기초구조)

  • Sin, Mun-Su;Jeong, Mu-Yeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.467-470
    • /
    • 2004
  • MANPro-based control is a novel control paradigm aimed at intelligent manufacturing systems on the basis of mobile agent-based negotiation process (MANPro). MANPro is a negotiation mechanism based on the agent-based control architecture and, especially, it adapts a mobile agent system called N-agent for the negotiation process. N-agent travels around the network of distributed manufacturing systems to acquire information, and it makes a decision for system control according to the obtained information. MANPro includes communication architecture and information architecture for intelligent shop floor control. MANPro also considers the following issues: (1) negotiation mechanism, (2) single-agent internal strategic policies, and (3) information model. Communication architecture concerns the first issue of the negotiation mechanism. It provides information exchanging mechanism with functional modules. In specific, N-agent is equipped with an intelligent reasoning engine with a built-in knowledge base. This reasoning engine is closely related to the single-agent internal strategic policies of the second issue. Finally, ontology-based information architecture addresses information models and provides a framework for information modeling on negotiation. In this paper, these three issues are addressed in detail and a framework of MANPro-based control is also proposed.

  • PDF

Remote Control of an unmaned vehicle of shortage of hands using Internet (인터넷을 이용한 지능형 무인 차량의 원격제어)

  • 김승철;김남수;임영도
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.57-61
    • /
    • 2002
  • We design Collision Avoidance System using model vehicle. The purpose of this system(Collision Avoidance System) is to maintain continuously constant distance between a forward running vehicle and a following automatic guided vehicle(AGV). For this system, we design modeling of vehicle and observe this through simulation. By sing super sonic sensors to measure the distance between vehicles and controller using 80c196kc for changing velocity of motor, we design Collision Avoidance System as maintaining continuously constant distance between vehicles.

  • PDF