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Objective : Cerebral edema is the predominant mechanism of secondary inflammation after intracerebral hemorrhage (ICH). 
Pioglitazone, peroxisome proliferator-activated receptor gamma agonist has been shown to play a role in regulation of central 
nervous system inflammation. Here, we examined the pharmacological effects of pioglitazone in an ICH mouse model and 
investigated its regulation on NLRP3 inflammasome and glucose metabolism.
Methods : The ICH model was established in C57 BL/6 mice by the stereotactical inoculation of blood (30 µL) into the right frontal 
lobe. The treatment group was administered i.p. pioglitazone (20 mg/kg) for 1, 3, and 6 days. The control group was administered 
i.p. phosphate-buffered saline for 1, 3, and 6 days. We investigated brain water contents, NLRP3 expression, and changes in the 
metabolites in the ICH model using liquid chromatography-tandem mass spectrometry.
Results : On day 3, brain edema in the mice treated with pioglitazone was decreased more than that in the control group. 
Expression levels of NLRP3 in the ICH model treated with pioglitazone were decreased more than those of the control mice on days 
3 and 7. The pioglitazone group showed higher levels of glycolytic metabolites than those in the ICH mice. Lactate production was 
increased in the ICH mice treated with pioglitazone.
Conclusion : Our results demonstrated less brain swelling following ICH in mice treated with pioglitazone. Pioglitazone decreased 
NLRP3-related brain edema and increased anaerobic glycolysis, resulting in the production of lactate in the ICH mice model. NLRP3 
might be a therapeutic target for ICH recovery.
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INTRODUCTION

Intracerebral hemorrhage (ICH), accounts for 10–15% of all 

stroke types with high morbidity and mortality24). Hematoma 

formation and cerebral edema begin within hours by extrava-

sation of blood products into the brain parenchyma and lasts 

for weeks17). Thus, increasing intracranial pressure leads to 

neurological deterioration23).

Neuroinflammation is known as a major contributor and 

hallmark of brain injury caused by ICH3,38). NLRP3 is activat-

ed in response to pathogens, several pathogen-associated mo-

lecular patterns, danger-associated molecular patterns, and 

environmental irritants31). Activation of NLRP3 is a critical 

component of the inflammasome and plays an independent 

role in injury signaling, apart from other inf lammasome 

components32,34). Finally, it can lead to cell death20,39). However, 

inhibition of the NLRP3 inflammasome has been shown to 

suppress the inflammatory response and reduce cell death21,43). 

Recently, pioglitazone, peroxisome proliferator-activated re-

ceptor gamma (PPAR-γ) agonist, reduced cerebral edema and 

immune response after traumatic brain injury by downregu-

lating the effects of NLRP315). 

Metabolites have an important role in biology as structures 

of the genome, proteomes, and cell membranes. Additionally, 

they have other functions as signaling molecules, energy 

sources, and metabolic intermediates. Mass spectroscopy 

(MS) remains the most favored technology for metabolomics 

due to its wide dynamic range and good sensitivity in the 

nanomolar range19). However, few studies have reported me-

tabolomic analyses in hemorrhagic stroke patients4). In the 

present study, we investigated the effect of pioglitazone on 

NLRP3-related brain edema and glucose metabolism in an 

animal model of ICH.

MATERIALS AND METHODS

This study was approved by Institutional Review Board of 

The Catholic University of Korea St. Vincent’s Hospital Insti-

tutional Animal Care and Use Committee (IRB No. 17-8).

ICH mouse model
Six-week-old male C57/BL mice (Central Laboratory Ani-

mals, Seoul, Korea) were used. The mice were housed in a 

standardized animal room (lights on 7 am to 7 pm, room 

temperature 22±2°C). The mice were anesthetized with iso-

flurane and a midline incision was made in the head. Then, 

they were inoculated stereotactically with arterial blood (30 

µL) into the right frontal lobe (2 mm lateral and 1 mm poste-

rior to the bregma at a depth of 2.5 mm from the skull) using 

a sterile Hamilton syringe fitted with a 26-gauge needle 

(Hamilton, Reno, NV, USA) and a microinfusion pump (Har-

vard Apparatus, Holliston, MA, USA). The needle was left in 

place for an additional 5 minutes after injection to prevent 

possible leakage. It was slowly withdrawn within 2 minutes28). 

Following the surgery, the skull hole was sealed with bone wax 

and the incision was closed with sutures and the mice were al-

lowed to recover. To avoid postsurgical dehydration, 0.5 mL of 

normal saline was given to each mouse by subcutaneous in-

jection immediately after surgery.

Sample preparation for the assessment of brain 
edema

After the mice were euthanized by CO2 inhalation, the 

brain was removed and the cerebrum was dissected from the 

brain stem. The wet weight of the cerebrum was measured 

and the cerebrum was dried in a dry oven at 100°C for 30 

hours. The dry weight was then determined. The water con-

tent of the brain was calculated as follows : water content = 

[(wet weight – dry weight) / wet weight] × 100%9).

Western blot analysis
Total protein was extracted using a PhosSTOP EASYpack 

(Roche, Mannheim, Germany) according to the manufactur-

er’s instructions. The proteins were separated by SDS-PAGE, 

transferred to nitrocellulose membranes, and detected with 

antibodies against NLRP3 (Cell Signaling Technology, Dan-

vers, MA, USA) and β-actin (Sigma-Aldrich, Co., St. Louis, 

MO, USA). Immunoreactivity was detected using the ECL 

chemiluminescence system and quantified using an imaging 

densitometer. The density of each band was quantified using 

Quantity One software (Bio-Rad, Hercules, CA, USA).

Liquid chromatography-tandem mass spectrom-
etry (LC-MS/MS)

Brain tissue (50–100 mg) was homogenized using a Tissue-

Lyzer (Qiagen, Germantown, MD, USA) with 400 µL of chlo-

roform/methanol (2/1). The homogenate was incubated for 20 
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minutes at 4°C. Glutamine-d4 was added to each sample as an 

internal standard after incubation and mixed well. The sam-

ple was then centrifuged at 13000 rpm for 10 minutes. The su-

pernatant was collected and 100 µL of H2O was added. The 

sample was mixed vigorously and centrifuged at 4000 rpm for 

20 minutes. The upper phase was taken and dried under vac-

uum. The dried sample was stored at -20°C and reconstituted 

with 40 µL of H2O/acetonitrile (50/50 v/v) prior to LC-MS/MS 

analysis

Metabolites related to energy metabolism were analyzed 

with an LC-MS/MS equipped with a 1290 HPLC (Agilent, 

Santa Clara, CA, USA), Qtrap 5500 (ABSciex, Flamingham, 

MA, USA) and a 50×2 mm reverse phase column (Synergi Fu-

sion-RP). Then, 3 µL was injected into the LC-MS/MS system 

and ionized with a turbo spray ionization source. Ammonium 

acetate (5 mM in H2O) and 5 mM ammonium acetate in ace-

tonitrile were used as mobile phases A and B, respectively. The 

separation gradient was as follows : hold at 0% B for 5 min-

utes, 0 % to 90% B for 2 minutes, hold at 90% for 8 minutes, 

90% to 0% B for 1 minute, then hold at 0% B for 9 minutes. 

The LC flow rate was set at 70 µL/min, except for 140 µL/min 

from 7 to 15 minutes. The column temperature was main-

tained at 23°C. Multiple reaction monitoring was used in the 

negative ion mode. Extracted ion chromatogram (EIC) corre-

sponding to the specific transition for each metabolite was 

used for quantitation. The area under the curve of each EIC 

was normalized to the EIC of the internal standard and the 

ratio was used for relative comparisons.

RESULTS

ICH mouse model 
We established an ICH mouse model through intracranial 

injection of autologous whole blood (30 µL) (Fig. 1). A total of 

30 mice were randomly assigned into the control and treat-

ment groups. Mice in the treatment group were administered 

pioglitazone i.p. (20 mg/kg) for 1, 3, and 6 days. Mice in the 

control group were administered phosphate-buffered saline 

i.p. for 1, 3, and 6 days. The mice were sacrificed on days 1, 3, 

and 7 for analysis (Fig. 2).

Pioglitazone administration reduces brain edema
We compared the water contents of the ipsilateral and con-

tralateral hemispheres in the ICH mice and ICH mice treated 

with pioglitazone. On day 3, brain edema in the ipsilateral 

hemispheres of mice treated with pioglitazone (77.69±0.50%) 

was decreased more than that of the ipsilateral hemispheres in 

the ICH mice (79.30±0.55%) (p=0.0001). The same finding 

was made in the contralateral hemispheres. On day 7, the 

brain edema in mice treated with pioglitazone was decreased 

more than that in the ICH mice. Brain edema in the ipsilateral 

Fig. 1. Establishment of intracranial hemorrhage (IcH) models (hematoxylin and eosin, H&E). coronal section of the whole brain (A, scale bar=3 mm) and 
magnification of the hematoma (B, ×200). 

A B

Fig. 2. Treatment schedule.

Sacrifice

Day 0 1 2 3 4 5 6 7
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(30 µL for 10 minutes)
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hemispheres (75.11±0.35%) on day 7 was decreased more than 

that of the ipsilateral hemispheres (77.69±0.50%) on day 3 in 

the pioglitazone-treated group (p<0.0001) (Fig. 3).

Pioglitazone administration reduces NLRP3
We compared the expression levels of NLRP3 in the ipsilat-

eral hemispheres among the groups. The expression levels of 

NLRP3 in the ICH mice treated with pioglitazone were de-

creased more than those of the ICH mice on day 7 (p=0.025) 

(Fig. 4).

Pioglitazone administration modulates metabo-
lism

Brain tissues were obtained from the control mice, ICH 

mice, and ICH mice treated with pioglitazone on day 7 and 

analyzed by LC-MS/MS. The values are calculated with an 

equation (peak area of analyte/peak area of internal standard). 

Increased glycolysis was observed in the brains of the ICH 

mice treated with pioglitazone for 6 days. Increased glucose 

availability was accompanied by an increase in glycolytic in-

termediates (glucose-6-phosphate, 19.76±4.17; fructose-1,6-

biphosphate, 10.96±1.68; and pyruvate, 2.42±0.16) and in-

creased lactate production (42.53±2.88) (Fig. 5A). Differences 

in the tricarboxylic acid (TCA) cycle intermediates (citrate, 

α-ketoglutarate, succinate, fumarate, and malate) were not 

significant between the ICH mice and the ICH mice treated 

with pioglitazone. Various metabolites, such as adenosine 

monophosphate, adenosine diphosphate, adenosine triphos-

phate (ATP), nicotinamide adenine dinucleotide (NADH), 

reduced NADH, and phosphoenolpyruvate, were investigat-

ed. The levels of NADH were lower in ICH mice treated with 

pioglitazone (0.07±0.02) than in the ICH mice (0.21±0.00). 

No differences in the other metabolites were noted (Fig. 5B).

We also investigated the pentose phosphate pathway (PPP), 

including ribulose-5-phosphate/ribose-5-phosphate, ri-

bose-1,5-bisphosphate, sedoheptulose-7-phosphate, 6-phos-

phogluconate, nicotinamide adenine dinucleotide phosphate 

(NADPH), and reduced NADPH. There were no significant 

differences in the PPP metabolites between the ICH mice and 

ICH mice treated with pioglitazone (Fig. 5C).

DISCUSSION

We investigated pharmacological effects of pioglitazone on 

NLRP3 expression and perihematomal edema in an ICH 

mouse model. Pioglitazone is an agonist of the PPAR that reg-

ulates lipid metabolism and reduces insulin resistance40). 

Fig. 3. comparison of brain water contents. The water contents of both 
hemispheres in IcH mice treated with pioglitazone were lower than 
those in IcH mice on days 3 and 7. In the treatment group, the water 
content of the ipsilateral hemispheres on day 7 was decreased more 
than on day 3 (n = 7, each group). *p<0.05. IcH : intracranial hemorrhage.
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PPAR is a member of the nuclear receptor superfamily. It is 

expressed in monocytes, macrophages, and microglia. Recent 

studies have revealed that pioglitazone can reduce macro-

phage infiltration and the activation of tumor growth factor 

beta-1, leading to a deterioration in NLRP3 levels and down-

stream secretion of inflammatory cytokines12,26). Our results 

demonstrated that the brain swelling following ICH was less 

in mice treated with pioglitazone compared to ICH mice. The 

water content of the ICH hemispheres became greater as time 

passed. Pioglitazone administration reduced the water content 

in the ICH mice. The initial bleeding caused mechanical de-

struction of the brain’s cellular structure. Hematoma forma-

tion can compress the surrounding brain and increase intra-

cranial pressure, thereby potentially affecting blood f low18). 

The therapeutic targets of ICH have focused on secondary 

brain injury because it is reversible. Secondary damage after 

ICH is caused by a cascade effect initiated by the primary in-

jury (e.g., mechanical disruption and mass effect), the release 

of clotting components (e.g., hemoglobin and iron), and the 

biophysiological response to the hematoma (e.g., inflamma-

tion). A pronounced inflammatory response occurs with the 

activation of resident microglia, the influx of leukocytes into 

the brain, and the generation of inf lammatory media-

tors22,27,33). The NLRP3 inflammasome can mediate perihema-

tomal neuronal death. It occurs as early as three to six hours 

after a stroke, especially in ICH10,44). Inf lammation and im-

munity have protentional roles in cerebral edema and NLRP3 

is a well-known component of this cascade37). The NLRP3 in-

flammasome is associated with ICH-induced secondary inju-

ry. Inhibition of NLRP3 may affect the recovery of brain 

function after ICH41). We found that the NLRP3 was decreased  

in pioglitazone-treated ICH mice, suggesting that NLRP3 

downregulation could reduce cerebral edema caused by ICH.

We observed that glucose uptake was converted into lactate 

through hyperglycolysis in the ICH model mice treated with 

pioglitazone. The levels of glycolytic metabolites were higher 

Fig. 5. Liquid chromatography-tandem mass spectrometry analysis. In the glycolysis pathway, the production of glucose-6-phosphate, fructose-1,6-
biphosphate, pyruvate, and lactate were increased in IcH mice brains treated with pioglitazone compared to those IcH mice (A). In the TcA cycle, the 
production of nicotinamide adenine dinucleotide was decreased in IcH mice treated with pioglitazone more than that of IcH mice. Differences in other 
metabolites were not noted (B). In the PPP, there were no significant differences in PPP metabolites between the two groups (c). *p<0.05. IcH : 
intracranial hemorrhage, TcA : tricarboxylic acid, PPP : pentose phosphate pathway.
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Fig. 5. continued.
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in ICH mice treated with pioglitazone than in the untreated 

ICH mice. Cerebral hyperglycolysis is thought to operate to 

cope with the extreme metabolic demand of the brain cells to 

restore homeostasis and integrity during recovery from ICH. 

Pioglitazone administration could compensate oxidative 

phosphorylation normally and meet an increased energy de-

mand by an increased glycolysis.

Lactate is an important cerebral substrate of glucose. Neu-

roprotective effects and improvement in cognition following 

lactate administration have been reported in a traumatic brain 

injury model25). Other reports have revealed reductions in le-

sion sizes in both stroke and traumatic brain injury (TBI) ani-

mal models by lactate administration2,6). Lactate provides an 

energy source and is involved in cerebral metabolism in the 

glucose-deprived brain11). During neuronal glycolysis, lactate 

derived from astrocytes is produced at a faster rate, providing 

a quick and readily available source to meet increasing energy 

requirements7,30). Lactate-to-pyruvate ratio (LPR) has been 

found to be an independent predictor of mortality and unfa-

vorable outcome in the largest cohort of TBI patients moni-

tored with microdialysis35). Lactate concentration is a highly 

sensitive indicator of upregulated glycolytic flux but pyruvate 

levels are necessary in order to differentiate whether the up-

regulation of the glycolytic flux is anaerobic or an indicator of 

an increased use of the glycolysis under aerobic conditions. 

An increased levels of lactate and a high LPR have been highly 

sensitive predictors of poor outcomes29). Microdialysis can al-

low for the direct assessment of brain energetic metabolism 

after ICH. In one study, the effects of pioglitazone on glucose 

metabolism were investigated in cultured rat neurons and as-

troglia. Pioglitazone improved aerobic glycolysis and lactate 

release in the astroglia. These results revealed that piogli-

tazone may increase the efficiency of glucose metabolism in 

the damaged brain16). To the best of our knowledge, this is the 

first report showing that pioglitazone administration can in-

crease levels of pyruvate and lactate in mice brains with ICH. 

Our results suggest that the production of lactate could supply 

the energy needs in ICH settings.

TCA cycle not only provides reducing equivalents of the re-

spiratory complexes, it also generates high-energy phosphates. 

In the presence of oxygen, NADH are oxidized, leading to the 

development of an electrochemical gradient across the inner 

mitochondrial membrane. This electrochemical gradient is uti-

lized by ATP synthase to make ATP. During anoxia, NADH 

cannot be oxidized by the respiratory complexes; therefore, oxi-

dative phosphorylation ceases8). PPP, which produces ribose-

5-phosphate and NADPH for DNA/RNA and fatty acid syn-

thesis, is an alternative anabolic pathway to the preparatory 

phase of glycolysis. PPP are highly activated under normoxic 

conditions, whereas acute hypoxia causes downregulation of 

PPP metabolites concomitant with upregulation of glycolysis36). 

ATP is increased in the ICH mice treated with pioglitazone, 

compared with the ICH mice. However, the difference was not 

statistically significant between them. Although neither the in-

termediates of the TCA cycle nor the PPP metabolites were af-

fected by pioglitazone administration, the level of NAD de-

creased. Cellular NAD was shown to be significantly depleted 

during reperfusion injury after ischemia5,14). Also, exogenous 

NAD supplementation can increase intracellular NAD levels 

and reduce reperfusion-induced cell death in primary neuron 

cultures1,42). NAD is effective only when it is given within two 

hours after reperfusion13). We removed the ICH brains seven 

days after the injection of autologous blood for metabolomics 

analysis. Further study is needed to evaluate the changes in me-

tabolites from the hyperacute stage to the late stage and define 

the therapeutic window of pioglitazone.

CONCLUSION

In summary, pioglitazone decreased NLRP3-related brain 

edema and increased anaerobic glycolysis, resulting in the 

production of lactate in an ICH mouse model. NLRP3 might 

be a therapeutic target for ICH recovery. The current study 

suggests that administration of pioglitazone could be an effec-

tive strategy for hemorrhagic stroke.
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