• 제목/요약/키워드: Model Ground

검색결과 4,251건 처리시간 0.072초

축소형 모델 접지전극의 매설깊이에 따른 위험전압의 분석 (Analyses of Hazard Voltages According to the Buried Depth of Small-sized Model Grounding Electrode)

  • 백영환;이복희
    • 조명전기설비학회논문지
    • /
    • 제23권4호
    • /
    • pp.56-61
    • /
    • 2009
  • 본 논문은 축소형 모델 접지전극이 접속된 금속제 구조물 주변의 대지표면전위분포와 위험전압에 대하여 기술하였다. 접지에 관련된 문제를 실제 현장데이터로부터 적정한 결론을 도출하기는 매우 어려우므로 접지전극 주변의 전위분포와 접촉전압, 보폭전압의 산정에 축소형 모델시험을 사용한다. 본 연구에서는 균질토양을 모의하기 위해 직경이 1,100[mm] 반구형 용기를 사용하였다. 실험결과, 접지전극 주변의 대지표면전위는 매우 높게 나타났으며, 특히 접지전극의 직상부의 대지표면전위는 다른 위치에 비해 높게 나타났다. 접지전극의 매설깊이가 증가함에 따라 대지표면전위와 보폭전압은 낮아지지만 접촉전압은 높아지는 것으로 나타났다.

Empirical ground motion model for Vrancea intermediate-depth seismic source

  • Vacareanu, Radu;Demetriu, Sorin;Lungu, Dan;Pavel, Florin;Arion, Cristian;Iancovici, Mihail;Aldea, Alexandru;Neagu, Cristian
    • Earthquakes and Structures
    • /
    • 제6권2호
    • /
    • pp.141-161
    • /
    • 2014
  • This article presents a new generation of empirical ground motion models for the prediction of response spectral accelerations in soil conditions, specifically developed for the Vrancea intermediate-depth seismic source. The strong ground motion database from which the ground motion prediction model is derived consists of over 800 horizontal components of acceleration recorded from nine Vrancea intermediate-depth seismic events as well as from other seventeen intermediate-depth earthquakes produced in other seismically active regions in the world. Among the main features of the new ground motion model are the prediction of spectral ordinates values (besides the prediction of the peak ground acceleration), the extension of the magnitudes range applicability, the use of consistent metrics (epicentral distance) for this type of seismic source, the extension of the distance range applicability to 300 km, the partition of total standard deviation in intra- and inter-event standard deviations and the use of a national strong ground motion database more than two times larger than in the previous studies. The results suggest that this model is an improvement of the previous generation of ground motion prediction models and can be properly employed in the analysis of the seismic hazard of Romania.

지하매설물 속성을 활용한 기계학습 기반 지반함몰 위험도 예측모델 개발 (Development of Machine Learning Model to Predict the Ground Subsidence Risk Grade According to the Characteristics of Underground Facility)

  • 이성열;강재모;김진영
    • 한국지반환경공학회 논문집
    • /
    • 제23권8호
    • /
    • pp.5-10
    • /
    • 2022
  • 인구 밀집도가 높은 도시 중심지에서 발생하는 지반함몰의 주요 원인은 하수관 및 상수관과 같은 지하매설물의 손상으로 알려져 있다. 이와 관련하여 지반함몰의 원인 규명과 지반함몰 위험 예측에 관한 연구가 꾸준히 수행되고 있다. 현재 지반함몰은 지중탐사레이더를 통해 선제적으로 공동을 발견하여 대응하고 있으나, 이는 인력 및 비용의 소비가 크기 때문에 효율적인 장비의 운영을 위해 위험지역을 예측하고 예측된 지역을 우선순위로 탐사해야 할 필요가 있다. 따라서 본 연구에서는 ◯◯시의 2개 구를 500m×500m 크기의 그리드로 분할하고, 해당 그리드 내의 지하매설관 속성과 지반함몰 발생 데이터를 활용하여 데이터셋을 구축하였다. 구축된 데이터셋으로 기계학습을 통한 적절한 지반함몰 위험등급 예측 모델을 제시하였고, 제시된 모델을 활용하여 대상지역의 지반함몰 위험지도를 제시하고자 하였다.

미고결 층상지반에서 터널굴착시 응력재분배 메커니즘에 관한 연구 (A Study on Stress Redistribution Mechanism for Tunneling in an Unconsolidated Ground with Inclined Layers)

  • 박시현;안상로
    • 대한토목학회논문집
    • /
    • 제26권1C호
    • /
    • pp.53-61
    • /
    • 2006
  • 본 논문은 미고결 층상 지반에서 터널을 굴착함으로써 발생하는 응력 재분배 메커니즘을 모형 실험을 통해 규명한 것이다. 미고결 층상 지반을 모사하기 위해서는, 지반재료 자체만으로 자립이 가능케 하여 모형토조와의 마찰을 배제시킬수 있는 알루미늄 봉과 블록을 이용한 2차원 모형 실험을 실시하였다. 지층이 경사진 모형 지반에 대하여 터널 굴착에 따른 지반 변형과 응력 재분배 현상을 계측기를 통하여 각각 측정하였다. 지반변형에 대해서는, 지표면의 침하형상을 측정하여 굴착에 따른 변형 특성을 살펴보았다. 응력 재분배 현상에 대해서는, 터널 작용 토압과 터널 주변부 작용 토압의 변화를 각각 측정하여 상호 검토를 실시하였다. 이러한 실험 결과를 토대로 미고결 층상 지반에서 터널 굴착에 따른 지반의 변형 및 응력 재분배 메커니즘에 대한 상세한 검토를 수행하였다.

강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석 (Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground)

  • 황희석;김동건;유남재
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF

Dynamic responses of structures with sliding base

  • Tsai, Jiin-Song;Wang, Wen-Ching
    • Structural Engineering and Mechanics
    • /
    • 제6권1호
    • /
    • pp.63-76
    • /
    • 1998
  • This paper presents dynamic responses of structures with sliding base which limits the translation of external loads from ground excitation. A discrete element model based on the discontinuous deformation analysis method is proposed to study this sliding boundary problem. The sliding base is simulated using sets of fictitious contact springs along the sliding interface. The set of contact spring is to translate friction force from ground to superstructure. Validity of the proposed model is examined by the closed-form solutions of an idealized mass-spring structural model subjected to harmonic ground excitation. This model is also applied to a problem of a three-story structural model subjected to the ground excitation of 1940 El Centro earthquake. Analyses of both sliding-base and fixed-base conditions are performed as comparisons. This study shows that using this model can simulate the dynamic response of a sliding structure with frictional cut-off quite accurately. Results reveal that lowering the frictional coefficient of the sliding joint will reduce the peak responses. The structure responses in little deformation, but it displaces at the end of excitation.

축소모형실험을 이용한 지반굴착시 주변 지반 거동 연구 (Laboratory investigation on deep excavation-induced ground movements)

  • 유충식;이성우;이봉원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1476-1483
    • /
    • 2005
  • This paper presents the results of small scale model tests on the behavior of propped wall and ground movements during deep excavation. Small scale model tests were performed in order to investigate the effects of various influencing factors on the deep excavation, such as stiffness of ground and unsupported span length. The results of model tests indicated that the wall behavior is significantly influenced not only by the stiffness of ground but by the over-excavation, and that the wall behavior can be reduced by decreasing the unsupported span length and increasing the stiffness of ground.

  • PDF

인공신경망기법을 이용한 깊은 굴착에 따른 지표변위 예측 (Prediction of Deep-Excavation induced Ground surface movements using Artifical Neural Network)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.451-458
    • /
    • 2002
  • This paper presents the prediction of deep excavation-induced ground surface movements using artificial neural network, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep-excavation-induced ground movements was employed and validated against available large-scale model test results. The validated model was then used to perform a parametric study on deep excavations with emphasis on ground movements. Using the result of the finite element analysis, Artificial Neural Network(ANN) system is formed, which can be used in the prediction of deep exacavation-induced ground surface displacements. The developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

지중열교환기의 종류에 따른 열전달 성능에 관한 연구 (A study on the Heat Transfer Performance according to Ground Heat Exchanger Types)

  • 황석호;송두삼
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.75-80
    • /
    • 2010
  • Generally, ground-source heat pump (GSHP) systems have a higher performance than conventional air-source systems. However, the major fault of GSHP systems is their expensive boring costs. Therefore, it is important issue that to reduce initial cost and ensure stability of system through accurate prediction of the heat extraction and injection rates of the ground heat exchanger. Conventional analysis methods employed by line source theory are used to predict heat transfer rate between ground heat exchanger and soil. Shape of ground heat exchanger was simplified by equivalent diameter model, but these methods do not accurately reflect the heat transfer characteristics according to the heat exchanger geometry. In this study, a numerical model that combines a user subroutine module that calculates circulation water conditions in the ground heat exchanger and FEFLOW program which can simulate heat/moisture transfer in the soil, is developed. Heat transfer performance was evaluated for 3 different types ground heat exchanger(U-tube, Double U-tube, Coaxial).

패키지의 주파수 의존형 파워 및 그라운드 평판 모델 (Frequency-Variant Power and Ground Plane Model for Electronic Package)

  • 이동훈;어영선
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.385-388
    • /
    • 1999
  • A new frequency-variant equivalent circuit model of power/ground plane is presented. The equivalent circuit is modeled with grid cells. The circuit parameters of each cell were extracted by using Fasthenry. To verify the developed circuit model, its s-parameters are compared with the measured s-parameters 〔2〕 and the full-wave simulation-based s-parameters. Consequently, it is shown that our frequency-variant equivalent circuit model can accurately predict imperfect ground effects under the high frequency operation of electronic package.

  • PDF