• 제목/요약/키워드: Modal Stiffness

검색결과 437건 처리시간 0.032초

Frequency domain analysis of concrete arch dams by decoupled modal approach

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • 제21권4호
    • /
    • pp.423-435
    • /
    • 2005
  • A modal approach is proposed for dynamic analysis of concrete arch dam-reservoir systems in frequency domain. The technique relies on mode shapes extracted by considering the symmetric parts of total mass and stiffness matrices. Based on this method, a previously developed program is modified, and the response of Morrow Point arch dam is studied for various conditions. The method is proved to be very effective and it is an extremely convenient modal technique for dynamic analysis of concrete arch dams.

Seismic evaluation of vertically irregular building frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities

  • Nezhad, Moosa Ebrahimi;Poursha, Mehdi
    • Earthquakes and Structures
    • /
    • 제9권2호
    • /
    • pp.353-373
    • /
    • 2015
  • In this paper, the effects of different types of irregularity along the height on the seismic responses of moment resisting frames are investigated using nonlinear dynamic analysis. Furthermore, the applicability of consecutive modal pushover (CMP) procedure for computing the seismic demands of vertically irregular frames is studied and the advantages and limitations of the procedure are elaborated. For this purpose, a special moment resisting steel frame of 10-storey height was selected as reference regular frame for which the effect of higher modes is important. Forty vertically irregular frames with stiffness, strength, combined-stiffness-and-strength and mass irregularities are created by applying two modification factors (MF=2 and 4) in four different locations along the height of the reference frame. Seismic demands of irregular frames are computed by using the nonlinear response history analysis (NL-RHA) and CMP procedure. Modal pushover analysis (MPA) method is also carried out for the sake of comparison. The effect of different types of irregularity along the height on the seismic demands of vertically irregular frames is investigated by studying the results obtained from the NL-RHA. To demonstrate the accuracy of the enhanced pushover analysis methods, the results derived from the CMP and MPA are compared with those obtained by benchmark solution, i.e., NL-RHA. The results show that the CMP and MPA methods can accurately compute the seismic demands of vertically irregular buildings. The methods may be, however, less accurate especially in estimating plastic hinge rotations for weak or weak-and-soft top and middle storeys of vertically irregular frames.

전기체 동적 유한요소 모델을 이용한 소형항공기 플러터 해석 (Flutter Analysis of Small Aircraft using Full Airframe Dynamic FE Model)

  • 이상욱;백승길;김성찬;황인희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.424-429
    • /
    • 2008
  • Aircraft flutter analysis model consists of dynamic FE model and aerodynamic model. Dynamic FE model is composed of stiffness and mass model, and is used for the prediction of normal mode characteristics of the structure. Since aircraft flutter analysis is normally performed in the modal domain, dynamic FE model shall be constructed to describe the modal characteristics of the structure with sufficient accuracy. In this study, dynamic FE modeling method was described using full airframe FE model and structural and system weight data for aircraft flutter analysis. In addition, full airframe dynamic FE model for composite small aircraft was constituted for normal mode and flutter analysis, and the mass modeling results were compared with the target weight data to validate the mass modeling method proposed. Finally, full airframe flutter analysis of composite small aircraft was performed with the dynamic FE model and the aerodynamic model composed.

  • PDF

회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석 (Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section)

  • 김민권;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석 (Modal Analysis of a Rotating Packet Blade System having a Crack)

  • 권승민;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1244-1251
    • /
    • 2009
  • In this paper the vibrational behavior of a multi-packet blade system having a cracked blade is investigated. Each blade is assumed as a slender cantilever beam. The coupling stiffness effect that originates from either disc flexibility or shroud is considered in the modeling. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack is examined.

프레임이 적용된 스탬프 베이스의 동특성 분석 (Analysis of dynamic characteristic applying frame on stamped base in 2.5 inch hard disk drive)

  • 임건엽;박노철;박경수;김석환
    • 정보저장시스템학회논문집
    • /
    • 제9권2호
    • /
    • pp.51-55
    • /
    • 2013
  • HDD has been easily exposed to the external shock and vibration because HDD has to apply to mobile devices. Therefore, the stiffness of base has been the important factors for the design of HDD. To improve the stiffness of base, the frame was applied to the base. First, the finite element model of the base was constructed. Then, the FE model was verified by modal analysis. Drop test was performed to confirming the shock simulation model. The dynamic characteristic of original base which is verified is compared with the base which is applied the frame through modal analysis and shock analysis.

드로우바와 로터가 고속주축계의 동적 특성에 미치는 영향 (Effects of a drawbar and a rotor in dynamic characteristics of a high-speed spindle)

  • 정원지;이춘만;이정환;임정숙
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.139-146
    • /
    • 2006
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. For more quantitative analysis of a built-in motor's dynamic characteristics, that of tile mass and stillness effects are considered. And the drawbar in the spindle can be in various condition according to supporting stiffness between drawbar and shaft. Therefore, in this paper following items are performed and analyzed : 1. Modal characteristics of the spindle. 2. Analysis of rotor's mass and stiffness effects. 3. Modal characteristics of the spindle including drawbar, rotor and tool. The results show enough stiff supports must be provided between shaft and drawbar to prevent occurring drawbar vibration lower than the natural frequency of 1st bending mode of the spindle, and considering the mass and stiffness of built-in motor's rotor is important thing to derive more accurate results.

Health monitoring of multistoreyed shear building using parametric state space modeling

  • Medhi, Manab;Dutta, Anjan;Deb, S.K.
    • Smart Structures and Systems
    • /
    • 제4권1호
    • /
    • pp.47-66
    • /
    • 2008
  • The present work utilizes system identification technique for health monitoring of shear building, wherein Parametric State Space modeling has been adopted. The method requires input excitation to the structure and also output acceleration responses of both undamaged and damaged structure obtained from numerically simulated model. Modal parameters like eigen frequencies and eigen vectors have been extracted from the State Space model after introducing appropriate transformation. Least square technique has been utilized for the evaluation of the stiffness matrix after having obtained the modal matrix for the entire structure. Highly accurate values of stiffness of the structure could be evaluated corresponding to both the undamaged as well as damaged state of a structure, while considering noise in the simulated output response analogous to real time scenario. The damaged floor could also be located very conveniently and accurately by this adopted strategy. This method of damage detection can be applied in case of output acceleration responses recorded by sensors from the actual structure. Further, in case of even limited availability of sensors along the height of a multi-storeyed building, the methodology could yield very accurate information related to structural stiffness.

Covariance-driven wavelet technique for structural damage assessment

  • Sun, Z.;Chang, C.C.
    • Smart Structures and Systems
    • /
    • 제2권2호
    • /
    • pp.127-140
    • /
    • 2006
  • In this study, a wavelet-based covariance-driven system identification technique is proposed for damage assessment of structures under ambient excitation. Assuming the ambient excitation to be a white-noise process, the covariance computation is shown to be able to separate the effect of random excitation from the response measurement. Wavelet transform (WT) is then used to convert the covariance response in the time domain to the WT magnitude plot in the time-scale plane. The wavelet coefficients along the curves where energy concentrated are extracted and used to estimate the modal properties of the structure. These modal property estimations lead to the calculation of the stiffness matrix when either the spectral density of the random loading or the mass matrix is given. The predicted stiffness matrix hence provides a direct assessment on the possible location and severity of damage which results in stiffness alteration. To demonstrate the proposed wavelet-based damage assessment technique, a numerical example on a 3 degree-of-freedom (DOF) system and an experimental study on a three-story building model, which are all under a broad-band excitation, are presented. Both numerical and experimental results illustrate that the proposed technique can provide an accurate assessment on the damage location. It is however noted that the assessment of damage severity is not as accurate, which might be due to the errors associated with the mode shape estimations as well as the assumption of proportional damping adopted in the formulation.

모드민감도 패턴인식에 의한 복잡한 구조물의 손상발견 (Damage Detection in Complex Structures using Pattern Recognition of Modal Sensitivity)

  • 김정태;류연선;노리스스텁스
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.97-105
    • /
    • 1997
  • A methodology to identify a baseline modal model of a complicated 3-D structure using limited structural and modal information is experimentally examined. In the first part, a system's identification theory for the methodology to identify, baseline modal responses of the structure is outlined. Next, an algorithm is designed to build a generic finite element model of the baseline structure and to calibrate the model by using only a set of post-damage modal parameters. In the second part, the feasibility of the methodology is examined experimentally using a field-tested truss bridge far which only post-damaged modal responses were measured for a few vibration modes. For the complex 3-D bridge with many members, we analyzed to identify unknown stiffness parameters of the structure by using modal parameters of the initial two modes of vibration.

  • PDF