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Damage Detection in Complex Structures using Pattern
Recognition of Modal Sensitivity
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ABSTRACT

A methodology to identify a bascline modal model of a complicated 3-D structure using limited structural
and modal information is experimentally examined. In the first part, a system's identification theory for the
methodology to identify baseline modal responses of the structure is outlined. Next, an algorithm is designed to
build a generic finite element model of the baseline structure and to calibrate the model by using only a set of
post-damage modal parameters. In the second part, the feasibility of the methodology is examined
experimentally using a field-tested truss bridge for which only post-damaged modal responses were measured
for a few vibration modes. For the complex 3-D bridge with many members, we analyzed to identify unknown
stiffness parameters of the structure by using modal parameters of the initial two modes of vibration.

1. INTRODUCTION

For large structures such as bridges, buildings, and offshore jackets, an accurate and reliable capability of
damage detection in critical members is the key to ensure the structural safety since damage in those members
causes local or global failures of the structural systems and also results in catastrophic disasters, such as loss of
lives, human suffering, and expenses of properties. During the past decade, a significant amount of research
has been conducted in the area of damage detection via changes in modal responses of a structure. For example,
research studies have related changes in eigenfrequencies to changes in beam properties,! focated defects in
beam elements from changes in eigenfrequencies,2> attempted to monitor the integrity of offshore platforms,*
attempted to monitor structural integrity of bridges,’ and investigated the feasibility of damage detection in
space structures using changes in modal parameters.5 Recently, research efforts have been focused on solving
the problem: to detect damage in civil engineering structures: (1) with many members (e.g., complex structures
such as 3-D truss structure); (2) for which only a few modal parameters are available; and (3) for which
baseline (i.c., as-built, undamaged state) modal responses were not recorded (e.g., the majority of existing
structures).”-10

By definition, a bascline structure is a structure with the same topology as the one given minus the damage
accumulated over the period of interest. It is impossible to know with complete certainty the initial stiffness and
mass distribution of the pristine structure. However, given a knowledge of the structure and engineering
judgment, we can propose possible pristine structure. In case of simple structures such as beams, we can make
such judgments with great certainty. ! In case of more complicated structures, our confidence to propose a
related pristine structure will depend on the availability of as-built documentation of the structure. Once a
pristine structure has been proposed, techniques from system identification along with the dynamic response of
the post-damaged structure can be used to evaluate the defining parameters of the pristine structure.

The objective of this paper is to present a robust methodology that identifies bascline modal models from
the usc of limited structural and modal information of existing structures. The presentation is outlined in two
parts. In the first part, we describe the general methodology of baseline modeling. We first outline a system's
identification theory to identify baseline modal responses of the structure.
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Next, we schematize an algorithm to design a generic finite element model of the baseline structure and to
calibrate the model by using experimental data. In the second part, we examine the feasibility of the
methodology using a field-tested truss bridge for

which only post-damaged modal responses were measured for a few vibration modes. For the complex bridge
with many members., we are partially lack of knowledge on structural geometry, material properties, and
boundary conditions.

2. SMART BASELINE MODELING METHODOLOGY
The general scheme shown in Fig. 1 represents an algorithm of damage detection in structures for which

only post-damaged modal parameters are available.!0 It is clear from Fig. 1 that the reliability of damage
detection model of structure lies upon the accuracy of baseline modal parameters.

MODAL psing
Experimental
TESTING | Modal DAMAGE
Paramelers DETECTION
MODEL
IDENTIFICATION OF
Model Eslimates of STRUCTURE
of > OF ~Bascline
Struciure STRUCTURAL Modal
PARAMETERS Parameters v
Location and Severity
of Damage

Fig. 1. Schematic of Approach Used to Detect Damage in Structures Without Baseline Modal Data

Then the problem to be solved is to develop a system identification method to generate bascline modal
parameters of a structure for which only a set of post-damage modal parameters are available. We provide the
solution to the problem in two steps. Firstly, we outline a system's identification theory of baseline modal
responses of the structure. Secondly, we design a baseline modeling methodology by first proposing a generic
finite element model of the baseline structure and next calibrating the model experimentally by using the post-
damage modal parameters.

2.1 System’s Identification Theory

Consider a linear skeletal structure with NE members and N nodes. Then suppose k| is the unknown
stiffness of the ;* member of the structure for which M cigenvalues, A%, are known. Also, suppose k, is a

known stiffness of the ;* member of a finite element (FE) model for which the corresponding set of M
eigenvalues, 4™, are known. Then, relative to the FE model, the fractional stiffness change of the ;* member
of the structure, «,, and the stiffnesses are related as follows:

k;=kj(1+aj) (1)
The fractional stiffness change of NE members may be obtained using the following equation (see Stubbs and
Osegueda (1990) for details)

a=F'Z )

The term « which isa NE x1 matrix containing the fractional changes in stiffnesses between the FE model
and the structure can be determined from Eq. (1). Also, the term Z which is a M x1 matrix containing the
fractional changes in eigenvalues between the two systems can be determined as follows:
7 A AT
: P
The term F which is a M x NE modal sensitivity matrix relating the fractional changes in j” member’s
stiffnesses to the fractional changes in * modal eigenvalues can be determined as follows:
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Fy=K, /K, @
InEq. (4), X, and K, are, respectively, the i* modal stiffness and the contribution of the ;* member to the

i” modal stiffness.
K = CD,.TC(D, s K‘, = (I)iTC}.CD, (&)

where @, is the i* modal vector, C is the system stiffness matrix, and C , is the contribution of ;* member

to the system stiffness matrix of the FE model.

An approach to estimate stiffness parameter k of the FE model is the minimization of an object function
in the form of an error function. We consider the simplest case in which the mass of the system is known. Then
the following object function is considered

k)= ST - 22|, AT =40 and AT =200 ®)

which represents a norm of the fractional changes in eigenvalues between the FE model and the structure. The
optimal set of stiffness parameters can be found from solving the following problem

Find keR™ to minimize J@k') @)
Formally, the problem is solved by first explicitly solving Eq. (2) to estimate stiffness changes (i.e., to compute
the NE x1, o« matrix) and next solving Eq. (1) to update the stiffness parameter k, of the FE model until

Z=0 or a=0 (i.e., as they approach zero).

2.2 Design of Methodology

The minimum design requirements for the methodology to be described include the following: first, the
methodology should accurately identify the baseline modal model; second, the methodology should use
minimum modal parameters; and third, the methodology should be so general to be applied to any structures for
which measured modal parameters are available. A series of components which include all methods and
techniques needed to satisfy the design requirement are schematized in Fig. 2. Each component is described
below.

Existing Structure: An existing structure with unknown stiffness k° is defined as input. The input data
include modal parameters (i.e., modes measured, resonance frequencies, and mode shapes) and structural
information on geometry, boundary conditions, and material types used in the structure.

Initial FE Model: A linear FE model with stiffness k of NE specific types of elements is sclected and
structural mass is assumed to be known. Its modal parameters of the M modes are computed numerically. Then
modal sensitivities of A/ modes and NE elements are computed using Eq. (4).

Smart Modeling: In the first step, we define element groups of the FE model. In order to avoid ill-
conditioning Eq. (2), the total number of element groups should not be quite larger than the number of
measured modes M (see Ref. 6 for details). Each element group is selected by quantifying its sensitivities to
vibration modes. In the second step, we define a membership function m,(x) (see Ref. 11 for details)

m,(x) = Degree(x € A) 3
where 4 is an ¢lement group and x is an element of the initial FE model. The membership function measures
the elementhood or degree to which the element x belongs to the element group 4.

Element-Group To Fine-Tune: In the first step, element groups which have a lack of knowledge on
structural parameters such as geometric or material properties are selected to be fine-tuned. The number of
element groups (NG) to be fine-tuned is equal to the total element groups minus element groups not to be fine-
tuned. The element groups not to be fine-tuned are selected on the basis of the availability of structural
properties. In the second step, the M x NG , F-matrix for M modes and NG groups is determined From Eq. (4).

Parameter Identification: Firstly, a M x1, Z-matrix (i.e., the fractional changes in eigenvalues between
the FE model and the structure) is computed using Eq. (3). Secondly, a NGx1, « -matrix (i.e., the fractional
changes in stiffnesses between the FE model and the structure) is solved using Eq. (2). Thirdly, the stiffness
parameters k of NG element groups is computed using Eq. (1). Finally, the optimal set of stiffness parameters
of NG element groups are determined by solving Eq. (7).

Baseline Modal Model: We select the identified FE model with the optimal set of stiffness parameters as
the baseline model. It has a sct of NG element group’s stiffnesses which are constant to all elements in each
element group. Also, it has the frequencies of the damaged (i.e., target) structure but none of its members are
damaged. Furthermore, the mode shapes of the bascline model differs from those of the damaged structure.
Once the baseline model is identified, its modal parameters for A/ modes are numerically generated.
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Fig. 2. Schematic of Smart Baseline Modeling

3. EXAMINATION OF METHODOLOGY

3.1 Test Structure

The selected 3-D truss structure is shown in Fig. 3. The truss was constructed in about 1908. After
undergone several repairs and modifications, the structure has shaped as a steel truss bridge with a steel
framing and 4 inch precast-concrete-slab decks with three 12 inch water lines added to the decks. The 40 foot
high steel truss structure supports a 19'-4" roadway. It consists of eleven (11) main structural subsystems which
are bottom chords, top chords, middle chords, lower lateral members, upper lateral members, vertical members,
diagonal members, portals, precast concrete slab, steel stringers, and three water lines (see Ref. 12 for details).

Vibrational test data of the truss were provided by two accelerometers: a fixed accelerometer placed in the
z-direction of node 45 (see Fig. 4) and a roving accelerometer that was moved from joint to joint of the bridge.
As shown in Fig. 4, accelerations were measured at the total 66 joints in the bridge. At each joint the roving
accelerometer recorded accelerations in the x, y, and z directions. The bridge was excited with an impact from
a mass weighing eighty pounds which was dropped about 1.5 feet. The location of excitation was held constant
throughout the course of testing. Records of acceleration versus time were recorded for each accelerometer. In
all, approximately 170 time histories were recorded for the bridge. Frequency response functions between the
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roving accelerometer and the fixed accelerometer were generated. Mode shapes and resonant frequencies were
extracted from the frequency response function. The extracted (post-damage) modal responses of the bridge
include resonant frequencies and mode shapes of the first bending mode and the first torsional mode. The
resonant frequencies were (1) 2.1875 Hz for the first bending mode and (2) 3.50 Hz for the first torsional mode.
The measured mode shapes of those two modes are shown in Fig. 5.
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Fig. 3. Schematic of the 3-D Truss Bridge
3.2 Smart Baseline Modeling

The proposed methodology schematized in Fig. 2 was used to identify a bascline modal model of the test
structure. In Step One, we selected modal parameters of the two measured modes and structural data of the test
structure with unknown stiffness parameters. In Step Two, we selected an initial FE model of 66 nodes and 211
elements as shown in Fig. 4. The FE model consists of eleven subsystems: bottom chords (Subsystem 1), top
chords (Subsystem 2), middle chords (Subsystem 3), lower lateral members (Subsystem 4), upper lateral
members (Subsystem 5), vertical members (Subsystem 6), diagonal members (Subsystem 7), portals (Subsystem
8), precast concrete slab (Subsystem 9), steel stringers (Subsystem 10), and three water lines (Subsystem 11).

Initial values of material and geometric properties of the FE model were estimated as follows. For elements
of Subsystems 1 to 8, Poisson's ratio v=03; the elastic modulus E =29 x10°psi ; the linear mass density
p=733x10"1b-s'fin" . For elements of Subsystem 11, E=0; p=10x10"Ib-s/in'; and the radius of the pipe
section r=6in. For plate elements of Subsystem 9, E=36x10°'psi; v=015; p=226x10"M-¢/in'; and the
plate thickness r=40in. For plate elements of Subsystem 10, E=29x10°psi; v=03; p=133x10"1b-5*[in* ;
and the thickness of steel plate 7=02in. See Ref. 12 for detailed data on cross-sectional area and second
moment of area of ail elements. Modal parameters of the FE model were computed numerically as (1) 2.373 Hz
for the first mode and (2) 2.7854 Hz for the second mode. Mode shapes of the two modes are shown in Fig. 6.
Next, modal sensitivities for 2 modes and 211 elements of the initial FE model were computed using Eq. (4)
{see Fig. 7). In Step Three, we selected three element groups (Group One, Group Two, and Group Three). As
shown in Fig. 4, the 11 subsystems of the initial FE model were assigned to one of three element groups based
on the availability of structural parameters (e.g., stiffness or flexibility) as well as the sensitivity of those
subsystems to vibrational modes. Group One represents elements for which sufficient information on structural
parameters is available from ficld-measurements and as-built designs. As Group One elements, we selected
elements in the top, bottom, and middle chords, the diagonal truss members, and the water lines.
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Fig. 4. Schematic of Finite Element Model of the 3-D Truss
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However, Groups Two and Three represent elements with insufficient information on structural parameters.
Elements for Groups Two and Three were determined using membership functions. In Table 1, each element
group is defined as a function of its sensitivity to the two vibration modes, the first bending mode and the first
torsional mode. Group Two has a very small (VS) sensitivity to the motion of the first bending mode and it has
also a very large (VL) sensitivity to the motion of the first torsional mode. The membership function of Group
Two is “IF X' is VS AND X? is VL. THEN X is Group Two”, in which X denotes an FE element and the
superscripts “1” and “2” denote the first mode and the second mode, respectively. For example, X' represents
the element X’s sensitivity to the first mode and X2 represents the element X’s sensitivity to the second mode.
Meanwhile, Group Three has a relatively small (RS) sensitivity to the motion of the first bending mode and it
has also a relatively large (RL) sensitivity to the motion of the first torsional mode. The membership function of
Group Three is “IF X' is RS AND X? is RL, THEN X is Group Three”. Using these membership functions, the
lower lateral members, the pre-cast concrete slab, and the steel stringers were selected as Group Two elements.
Also, the upper lateral members, the vertical truss members, and the portal members were selected as Group
Three elements. In Step Four, two element groups, Groups Two and Three, were selected to be fine-tuned.
The two element groups were selected since elements in those groups have insufficient information on the
geometric and material properties (note that Group One was not selected as stated previously). The 2x2 F-
matrix for the two measured modes and the two element groups (i.e., Groups Two and Three) was computed as
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shown in Table 2. For a given mode, each sensitivity represents the fraction of modal energy stored in the
particular element group.

Table 1. Element-Group's Membership to Vibration Modes

MODE First Bending First Torsional
GROUP Mode Mode
Group Two A4 VL
Group Three RS RL

In Step Five, stiffness parameters of Groups Two and Three were optimized to identify a realistic analytical
model of the 3-D truss. For the fine-tuning exercise, flexural rigidity and torsional rigidity were selected as
stiffness parameters of Group Two and Group Three, respectively. The results, using two frequencies and five
iterations, are listed in Table 3. After the iterations, the frequencies were identified within one percent error-
range of the target values. The values of the material properties (the elastic moduli) under the five iterations are
summarized in Table 4. Note that the values of the effective elastic moduli represent stiffness parameters of
Group Two and Group Three assuming that the geometric properties remain constant. In Step Six, from the
results of parameter identification, the FE model after the fifth iteration was selected as the baseline modal
model. Natural frequencies of the two modes are 2.1946 Hz for the first flexural mode and 3.4761 Hz for the
first torsional mode. Typical numerically generated mode shapes of the first two modes are shown in Fig. 6.

Table 2. Modal Sensitivity Used to Fine-Tune the FE Model

Sensitivity
Mode Group Two Group Three
1 (First Bending) 0.5609 0.4391
2 (First Torsion) 0.0913 0.9087

Table 3. Values of Natural Frequencies for Parameter Identification

Iteration Number
Mode Initial-Guess 1 2 3 4 5 Target
1 2.3730 2.2268 22042 2.1982 2.1958 2.1946 2.1850

2 2.7854 2.9955 3.2445 3.3797 3.4462 3.4761 3.5000

Table 4. Values of Elastic Moduli {psi) of Element-Groups for Parameter Identification

Iteration Number
Element
Group Initial-Guess 1 2 3 4 5
Group Two 29.0E6 4.87E6 2.87E6 2.35E6 2.15E6 2.05E6
Group Three 29.0E6 49.9E6 72.01E6 86.30E6 93.93E6 97.60E6
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3.3 Quantification of Baseline Modal Model

In order to justify the sclection of the baseline structure, we quantify the differences between the modal
sensitivities of the identified baseline model and the modal sensitivities of the existing structure (i.e., the 3-D
truss bridge). Let a set of sensitivities of the baseline model be given by u € RY and another set of sensitivities
of the existing structure be given by v eR”, in which R" is the space of order NE (i.e., the number of
elements). Given the two sets of the sensitivities of the first two modes, we computed the sensitivity assurance
criterion (SAC) which is defined as (see Ref. 9 for details)

_y @y’
SAC(U, V) =1~ m (9)
Eq. (9) quantifies the difference in orientation between u and v, without regard to scaling difficulties arising
from choice of numerical distance units. if SAC(u,v) =0, then the vectors u and v are perfectly correlated.

The sensitivities of the bascline model were computed for 2 modes and 211 elements by solving Eq. (4)
from the modal parameters and stiffness parameters of the identified FE model. Fig. 7 shows modal sensitivities
of the baseline model. The corresponding modal sensitivities of the existing structure were computed by solving
Eq. (4) from the measured modal parameters of the existing structure and the stiffness parameters of the
identified FE model. Fig. 8 shows modal sensitivities of the existing structure. From substituting the results of
Fig. 7 and Fig. 8 into Eq. (9), the SAC value between the existing structure and the identified baseline model
was found to be 0.015. From this result, we observe that the baseline model shows good identification to the
existing structure except at several elements which may be severely damaged. Noting that assessing the effect of
modeling errors and measurement noises is the topic of another on-going research, we conclude the bascline
modal parameters are identical to undamaged modal parameters of the existing structure.

4. SUMMARY AND CONCLUSION

A structural identification methodology was experimentally tested to examine its feasibility to identify
baseline modal model of complicated 3-D structure from the use of limited structural and modal information.
The investigation was presented in two parts. In the first part, we described the general methodology of baseline
modeling. We first outlined a system's identification theory to identify baseline modal responses of the structure.
Next, we schematized an algorithm to design a generic finite element mode! of the baseline structure and to
calibrate the model by using experimental data. In the second part, we examined the feasibility of the
methodology using a field-tested truss bridge for which only post-damaged modal responses were measured for
a few vibration modes. For the complex 3-D bridge with many members, we were partially lack of knowledge
on structural geometry, material properties, and boundary conditions.

Results of the baseline modeling in the 3-D truss bridge demonstrated the feasibility of the methodology.
Using the methodology, we analyzed to identify unknown stiffness parameters of the structure by using modal
parameters of the initial two modes of vibration. On-going research by the authors includes the assessment of
the methodology’s practicality on the damage detection practice of large structures with many complex
members for which limited structural and modal information are available.
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