• Title/Summary/Keyword: Mixing Pattern

Search Result 298, Processing Time 0.034 seconds

Neutrino Oscillation and S4 Flavor Symmetry

  • Park, Jong-Chul
    • Applied Science and Convergence Technology
    • /
    • v.27 no.5
    • /
    • pp.86-89
    • /
    • 2018
  • Observations of neutrino oscillations are very strong evidence for the existence of neutrino masses and mixing. From recent experimental results on neutrino oscillation, we find that neutrino mixing angles are quite consistent with the so-called tri-bi-maximal mixing pattern, but the deviation from observational results is non-negligible. However, the tri-bi-maximal mixing pattern is still useful as a leading order approximation and provides a good guideline to search for the flavor symmetry in the neutrino sector. We introduce the $S_4$ permutation symmetry as a flavor symmetry to the standard model of particle physics with additional particle contents of heavy right-handed neutrinos and scalar fields. Finally, we obtain the tri-bi-maximal mixing pattern as a mixing matrix in the lepton sector within the suggested model. To derive the required unitary mixing matrix for the neutrino sector, the double seesaw mechanism is utilized.

Numerical Analysis Study of the Mixing Mechanism of Non-element Mixer (논 엘레멘트 믹서의 혼합 메커니즘에 관한 수치해석적 검토)

  • You, Sun Ho
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Visualization of the mixing pattern in a non-element mixer was carried out using laser induced fluorescence(LIF) to evaluate characteristics of mixer consisting of the main flow pipe and branch flow pipes. The branch flows were injected periodically with the period $T_{in}$ normal to the main flow, and rhodamine B was mixed into the most upstream branch flow to visualize mixing pattern in the main flow pipe by LIF. The length of boundary line L of the LIF image was measured. In this study, a numerical analysis was performed to identify the mixing process of the non-element mixer, and the results were compared with experimental results. Each result was almost the same. When the number of branch flows is increased, the mixing pattern became complicated and was supposed to become chaotic. The length of boundary line L increased exponentially with an increase in the number of branch flows.

NUMERICAL VISUALIZATION OF THE MIXING PATTERN IN A LID-DRIVEN-CAVITY FLOW (드리븐 캐버티 내의 혼합현상에 대한 수치적 가시화)

  • Suh Y.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.3 s.34
    • /
    • pp.37-45
    • /
    • 2006
  • In this study we present the numerical methods that can be used in visualization of the flow and mixing patterns in a cavity driven by a top lid. The basic flow field within the cavity has been obtained by using a simple numerical scheme. The invariant manifold also called unstable manifold was then attained to represent the mixing pattern within the cavity. It was shown that care must be taken in calculating the trajectories of the fluid particles especially near corners of the cavity. The numerical results show excellent agreement with those obtained experimentally by other research group.

Numerical Analysis for Flow Distribution inside a Fuel Assembly with Swirl-type Mixing Vanes (선회 형태 혼합날개가 장착된 연료집합체 내부유동 분포 수치해석)

  • Lee, Gonghee;Shin, Andong;Cheong, Aeju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.5
    • /
    • pp.186-194
    • /
    • 2016
  • As a turbulence-enhancing device, a mixing vane installed at a spacer grid of the fuel assembly plays a role in improving the convective heat transfer by generating either swirl flow in the subchannels or cross flow between fuel rod gaps. Therefore, both configuration and arrangement pattern of a mixing vane are important factors that determine the performance of a mixing vane. In this study, in order to examine the flow distribution features inside $5{\times}5$ fuel assembly with swirl-type mixing vanes used in benchmark calculation of OECD/NEA, simulations were conducted with commercial CFD software ANSYS CFX R.14. Predicted results were compared to data measured from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannels-Horizontal) test facility. In addition, the effect of swirl-type mixing vanes on flow pattern inside the fuel assembly was described.

Effect of Hydraulic Property and Mixing Intensity of Flocculation Basin on Flocculation Efficiency in Water Treatment Plant (정수장 플록형성지의 수리학적 특성과 교반강도가 플록형성 효율에 미치는 영향)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.230-235
    • /
    • 2005
  • The main purpose of the flocculation process is to make flocs bigger to be removed easily in the following processes. The flow pattern and mixing intensity have a great influence on flocculation. In this study, the flow pattern was examined by a hydraulic tracer-test, where 3 water treatment plants having $800,000m^3/d$, $44,000m^3/d$ and $40,000m^3/d$ were employed. Also, the settling test was conducted to find out the relationship between the mixing intensity and the settling ability of flocs. The hydraulic tracer-test was conducted for the various flocculation processes that have different structures of flocculation basins. In the result, the retention time distribution (RTD) curves for the flocculation processes were quite different. In case of the inappropriate structure of the flocculation basin, the flow is not even so that the floc does not grow enough. To find out the relationship between mixing intensity and settleability of flocs, G-values were calculated and the settling test was conducted for two flocculation basins which have the same conditions except the G-value. For the flocculation basin with uneven G-value, the floc settleability was revealed poor. On the other hand, the flocculation basin with even G-value, the settleability was better than the previous one. From these experimental results, it is confirmed that the flow pattern is closely related to the structure of the flocculation basin and the settleability is affected by mixing intensity. Therefore the flow pattern and the strength of the mixing intensity should be examined sufficiently to design and operate flocculation basin.

Analysis of Aroma Pattern for Geographical Origin of Red Ginseng Concentrated by Electronic Nose (전자코를 이용한 홍삼 농축액의 원산지 판별을 위한 향기패턴 분석)

  • Hur, Sang-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.38-48
    • /
    • 2020
  • The aroma pattern was analyzed using electronic nose to examine the possibility of origin discrimination according to the mixing ratio of Chinese and Korean red ginseng concentrates. The origin of Chinese red ginseng concentrate and Korea red ginseng concentrate could be distinguished and the pattern of aroma component detected decreased as the mixing ratio of Chinese red ginseng concentrate increased. Cultivar and habitat of Korean red ginseng concentrated was remarkably distinguished by the chromatogram of frequency pattern, derivative pattern and visual pattern using olfactory images known as vapor printTM.

Flow Pattern Change of Dished Bottom Vessel with Dual Impeller in Transition Region (전이영역에서의 2단 날개가 있는 접시형 바닥 교반조의 유동 상태 변화)

  • Koh, Seung-Tae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.94-99
    • /
    • 2021
  • It was found that mixing patterns suddenly changed at an impeller rotation speed in a dished bottom vessel with dual Rushton turbines. Two isolated mixing regions like doughnuts rings generated at a low rotational speed and three isolated mixing regions generated at a higher speed. This phenomenon was observed at the mixing condition in transition area, where the power number with baffle was the same as that without baffle. We found a phenomenon in which the flow state in a dish-bottom agitation tank equipped with a two-stage Rushton turbine blade changes at a certain rotational speed. In the laminar flow region, the isolated stable donut rings were formed even when the rotational speed was changed, and no specific variation in the mixing pattern was observed. In the transition region, the two isolated thick unmixed donut rings do not change even if the rotation speed is changed in the flat bottom vessel, whereas in the dished bottom vessel, when the rotation speed is 450 rpm, the two isolated thick unmixed donut rings are changed to three isolated thin donut rings and then improved mixing. In the dished bottom vessel, in the range of Re=138~178, the isolated ring-shaped unmixed region appeared in three places and the size was also large. But in the flat bottom vessel, the isolated thick ring-shaped unmixed region appeared in two places in Re=116~176 and the size was also small. It appeared in two places, and the size was also small. The condition in which this phenomenon is observed is a transition region, and it was found that when the baffle plate is attached, the power number starts to increase compared to when the baffle plate is not present. In addition, when the mixing Reynolds number exceeded 300 and a slight turbulence was mixed in the flow state, the disconnection of these flow pattern was resolved and the mixture was completely mixed.

A Study on Flow and Mixing Caracteristics according to Hot Water Extraction (온수 추출에 따른 유동 및 혼합 특성에 관한 연구)

  • 장영근;박이동;김철주;황영규
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.53-59
    • /
    • 1995
  • In a hot water extraction process, the flow pattern of upper region in a storage tank is a major reason of mixing between hot water and cold water. In this study, the temperature distribution in a storage tank was measured to predict the flow pattern of upper region, and the degree of stratification was analysed to the variables dominating a extraction process. And also, it was found that the degree of stratification improved expecially in a low flow rate in case of using modified distributor I(DMI) as a outlet port type.

  • PDF

The Vertical Distribution Patterns of Long Range Transported SO2 in Korea Peninsula (한반도 서해상으로 장거리 이동하는 SO2의 농도 및 연직분포 특징)

  • Han, J.S.;Ahn, J.Y.;Hong, Y.D.;Kong, B.J.;Lee, S.J.;Sunwoo, Y.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.671-683
    • /
    • 2004
  • This study was carried out to understand long-range transport of $SO_2$ using aircraft measurements for the identification of it's horizontal and vertical concentration and distribution pattern. Thirteen missions of aircraft measurements have been done around 37$^{\circ}$00'/124$^{\circ}$30' from October 1997 to November 2001. Concentrations of $SO_2$ was 1.5~2.0 ppb in the below mixing layer, 0.6~1.1 ppb in the above mixing layer. $SO_2$ was found to be relatively higher than marine background level, 0.08~0.2ppb, indicating the western coast being influenced by long-range transport except for the summer season. The vertical distribution of $SO_2$ was classified into 3 groups using its vertical sounding and meteorology pattern; the first is linear decay pattern, the second is exponential decay pattern, and the last is gaussian distribution pattern in the below mixing layer, 2 patterns of linear decay and gaussian distribution patterns in the upper layer. It is founded that vertical distribution pattern is strongly dependent on meteorological condition, for example atmospheric stability and predominant air flow.

Mixing Efficiency Evaluation in Y-channel Micromixer Using LIF Confocal Microscope (LIF 공초점 현미경을 이용한 Y-채널 마이크로믹서의 혼합 효율 평가)

  • Kim, Kyoung-Mok;Shin, Yong-Su;Ahn, Yoo-Min;Lee, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.159-166
    • /
    • 2007
  • Mixing between two or more reagents is one of important processes in biochemical microfluidics. In efficient micromixer design, it is essential to analyze flow pattern and evaluate mixing efficiency with good precision. In this work, mixing efficiency for Y-channel micromixer is measured by fluorescence intensity using LIF(Laser Induced Fluorescence) Confocal Microscope. The Y-channel micromixers are fabricated with polydimethylsiloxane(PDMS) and those are bonded to glass plate through Plasma bonding. Nile Blue A is injected into the micromixer as a fluorescence dye for measuring of fluorescence intensity by He/Ne laser. For visualization of the flow pattern, dynamic image capturing is carried out using CAM scope. For the comparison with computer simulation, modified SIMPLE algorithm for incompressible flow equation is solved for the same geometry as in the experiment. Throughout the experiments and computer simulation, accurate mixing efficiency evaluation process for a PDMS Y-channel micromixer is established.