• Title/Summary/Keyword: Mixed Integer Programming Model

Search Result 231, Processing Time 0.027 seconds

Supply Chain Network Design - a Model and its Applications (공급사슬망 설계를 위한 수리모형 수립 및 응용)

  • Kim Jeonghyuk;Kim Daeki
    • Korean Management Science Review
    • /
    • v.21 no.2
    • /
    • pp.15-25
    • /
    • 2004
  • Great effort has been exerted to redesign the supply chain network as a means to improve corporate competitiveness. In this study, we present a mathematical model and a solution system to help redesign corporate logistics networks. The objective of the model is to minimize total logistics costs. We applied the solution system to real problem cases. We use the model and the concept to develop decision support system that is based on C++ with the use of CPLEX callable library as a solution engine. We tested and verified the DSS for redesigning the network of a large Korean electronics company. Through various scenario analyses. we recommend to redesign their supply chain network that demonstrates the possibility of substantial logistics cost savings.

Planning Demand- and Legislation-Driven Remanufacturing for a Product Family: A Model for Maximizing Economic and Environmental Potential

  • Kwak, Minjung
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.2
    • /
    • pp.159-174
    • /
    • 2015
  • Remanufacturing used, end-of-life products is a complex problem involving multiple types of products that may share common parts. Recovery targets assigned by market demand and environmental legislation add more difficulty to the problem. Manufacturers now need to achieve specified take-back and recovery rates while fulfilling demands for remanufactured products. To assists in the demand- and legislation-driven remanufacturing of a family of products (i.e., multiple products that share common parts), this paper introduces a bi-objective mixed integer linear programming (MILP) model for optimizing remanufacturing. The model identifies optimal remanufacturing plans for a product family, whereby, the remanufacturer can achieve demand and recovery targets more profitably and in an environmentally-friendly manner. The model can also be used to quantify and justify the economic and environmental benefits of a product family from a remanufacturing perspective. A case study is presented for remanufacturing an alternatorfamily of products.

A Heuristic Unloading Scheduling for the Raw-Material-Carrying Vessels (원료 하역순서(原料 荷役順序)의 결정(決定))

  • Seong, Deok-Hyeon;Lee, Yong-Hwang;Kim, Yun-Ho;Han, Jae-Ho;Kim, Jae-Yeon
    • IE interfaces
    • /
    • v.1 no.2
    • /
    • pp.35-44
    • /
    • 1988
  • The purpose of this paper is to prepare an unloading schedule of the raw-material-carrying vessels at Pohang port so as to minimize the total demurrages. A mixed integer programming(MIP) model was constructed, in which only three berths were considered. For the feasible application of the model an approximation approach was employed. The results of the test run of the model based on the past four-month's real data of P company revealed the company could have saved a considerable amount of demurrages, if the model had been applied during the same period. In addition, all the processes were computerized for the clerk-in-charge not only to utilize the results of this study easily but also to rearrange the schedule in quick response to any possible changes.

  • PDF

Restructuring Primary Health Care Network to Maximize Utilization and Reduce Patient Out-of-pocket Expenses

  • Bardhan, Amit Kumar;Kumar, Kaushal
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.122-140
    • /
    • 2019
  • Providing free primary care to everyone is an important goal pursued by many countries under universal health care programs. Countries like India need to efficiently utilize their limited capacities towards this purpose. Unfortunately, due to a variety of reasons, patients incur substantial travel and out-of-pocket expenses for getting primary care from publicly-funded facilities. We propose a set-covering optimization model to assist health policy-makers in managing existing capacity in a better way. Decision-making should consider upgrading centers with better potential to reduce patient expenses and reallocating capacities from less preferred facilities. A multinomial logit choice model is used to predict the preferences. In this article, a brief background and literature survey along with the mixed integer linear programming (MILP) optimization model are presented. The working of the model is illustrated with the help of numerical experiments.

Active Distribution Network Expansion Planning Considering Distributed Generation Integration and Network Reconfiguration

  • Xing, Haijun;Hong, Shaoyun;Sun, Xin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.540-549
    • /
    • 2018
  • This paper proposes the method of active distribution network expansion planning considering distributed generation integration and distribution network reconfiguration. The distribution network reconfiguration is taken as the expansion planning alternative with zero investment cost of the branches. During the process of the reconfiguration in expansion planning, all the branches are taken as the alternative branches. The objective is to minimize the total costs of the distribution network in the planning period. The expansion alternatives such as active management, new lines, new substations, substation expansion and Distributed Generation (DG) installation are considered. Distribution network reconfiguration is a complex mixed-integer nonlinear programming problem, with integration of DGs and active managements, the active distribution network expansion planning considering distribution network reconfiguration becomes much more complex. This paper converts the dual-level expansion model to Second-Order Cone Programming (SOCP) model, which can be solved with commercial solver GUROBI. The proposed model and method are tested on the modified IEEE 33-bus system and Portugal 54-bus system.

MILP model for short-term scheduling of multi-purpose batch plants with batch distillation process

  • Ha, Jin-Juk;Lee, Euy-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1826-1829
    • /
    • 2003
  • Fine chemical production must assure high-standard product quality as well as characterized as multi-product production in small volumes. Installing high-precision batch distillation is one of the common elements in the successful manufacturing of fine chemicals, and the importance of the process operation strategy with quality assurance cannot be overemphasized. In this study, we investigate the optimal operation strategy and production planning of a sequential multi-purpose plants consisting of batch processes and batch distillation with unlimited intermediate storage. We formulated this problem as an MILP model. A mixed-integer linear programming model is developed based on the time slot, which is used to determine the production sequence and the production path of each batch. Illustrative examples show the effectiveness of the approach.

  • PDF

Genetic Algorithm for Designing Independent Manufacturing Cells (독립적인 생산셀 설계를 위한 유전 알고리즘)

  • Moon, Chi-Ung;Yi, Sang-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.3
    • /
    • pp.581-595
    • /
    • 1997
  • The procedure of grouping the machines and parts to form cells is called manufacturing cell design. The manufacturing cell design is an important step in the development and implementation of advanced manufacturing systems. For the successful implementation of the manufacturing systems, identification of independent manufacturing cells, i.e., cells where parts are completely processed in the cell and no intercell movements, is necessary in the design phase. In this paper, we developed a mixed integer programming model and genetic algorithm based procedure to solve the independent manufacturing cells design problem considering the alternative process plans and machines duplication. Several manufacturing parameters such as, production volume, machine capacity, processing time, number of cells and cell size, are considered in the process. The model determines the process plan for parts, port families and machine cells simultaneously. The model has been verified with the numerical examples.

  • PDF

A Study on Berth Allocation for Navy Surface Vessel Considering Precedence Relationship among Services (서비스 전후 우선순위를 고려한 해군함정의 부두 할당에 관한 연구)

  • 정환식;김승권
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.350-353
    • /
    • 2003
  • Navy surface vessels require pier services such as emergency repair, oil supply, fm loading/unloading, crane, standby readiness, normal repair, gun arrangement, ammunition loading, and food loading during the period in port. The purpose of this study is to establish efficient berth allocation plan for navy surface vessels in home port under the limited resources of piers and equipments. The study suggests Mixed Integer Programing (MIP) model for bath allocation problem, considering precedence relationships among services. For a effective analysis, the model is implemented by ILOG OPL(Optimization Programming Language) Studio 3.1 and ILOG Cplex 7.0. The results of the model show reduction of berth shifts and increasement of service benefits. And thus, it would be a possibility of contribution in the improvement of fleet readiness.

  • PDF

Export Container Remarshaling Planning in Automated Container Terminals Considering Time Value (시간가치를 고려한 자동화 컨테이너 터미널의 수출 컨테이너 이적계획)

  • Bae, Jong-Wook;Park, Young-Man;Kim, Kap-Hwan
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.75-86
    • /
    • 2008
  • A remarshalling is one of the operational strategies considered importantly at a port container terminal for the fast ship operations and heighten efficiency of slacking yard. The remarshalling rearranges the containers scattered at a yard block in order to reduce the transfer time and the rehandling time of container handling equipments. This Paper deals with the rearrangement problem, which decides to where containers are transported considering time value of each operations. We propose the mixed integer programming model minimizing the weighted total operation cost. This model is a NP-hard problem. Therefore we develope the heuristic algorithm for rearrangement problem to real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost. For the sensitivity analysis of configuration of storage and cost weight, a variety of scenarios are experimented.

A mathematical planning model for vertical integration (수직통합 의사결정을 위한 계량분석모형)

  • 문상원
    • Korean Management Science Review
    • /
    • v.10 no.1
    • /
    • pp.193-205
    • /
    • 1993
  • This paper presents a mathematical model for a class of vertical integration decisions. The problem structure of interest consists of raw material vendors, components suppliers, components processing plants, final product (assembly) plants and external components buyers. Economic feasibility of operating components plants instead of keeping outside suppliers is our major concern. The model also determines assignment of product lines and production volumes to each open plant considering the cost impacts of economies of scale and plant complexity. The problem formulation leads to a concave, mixed integer mathematical program. Given the state of the art of nonlinear programming techniques, it is often not possible to find global optima for reasonably sized such problems. We developed an optimization solution algorithm within the framework of Benders decomposition for the case of a piecewise linear concave cost function. It is shown that our algorithm generates optimal solutions efficiently.

  • PDF