• Title/Summary/Keyword: Mismatch Error

Search Result 155, Processing Time 0.028 seconds

Non-Linearity Error Detection and Calibration Method for Binary-Weighted Charge Redistribution Digital-to-Analog Converter (이진가중치 전하 재분배 디지털-아날로그 변환기의 비선형 오차 감지 및 보상 방법)

  • Park, Kyeong-Han;Kim, Hyung-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.420-423
    • /
    • 2015
  • This paper proposes a method of non-linearity error detection and calibration for binary-weighted charge-driven DACs. In general, the non-linearity errors of DACs often occur due to the mismatch of layout designs or process variation, even when careful layout design methods and process calibration are adopted. Since such errors can substantially degrade the SNDR performance of DAC, it is crucial to accurately measure the errors and calibrate the design mismatches. The proposed method employs 2 identical DAC circuits. The 2 DACs are sweeped, respectively, by using 2 digital input counters with a fixed difference. A comparator identifies any non-linearity errors larger than an acceptable discrepancy. We also propose a calibration method that can fine-tune the DAC's capacitor sizes iteratively until the comparator finds no further errors. Simulations are presented, which show that the proposed method is effective to detect the non-linearity errors and calibrate the capacitor mismatches of a 12-bit DAC design of binary-weighted charge-driven structure.

  • PDF

The Gain and Phase Mismatch Detection Method with Closed Form Solution for LINC System Implementation (LINC 시스템 구현을 위한 닫힌 해를 갖는 크기 위상 오차 검출 기법)

  • Myoung, Seong-Sik;Lee, Il-Kyoo;Lim, Kyu-Tae;Yook, Jong-Gwan;Laskar, Joy
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.547-555
    • /
    • 2008
  • This parer proposed the path mismatch detection and compensation algorithm with closed form for linear amplification with non-linear components(LINC) system implementation. The LINC system has a merit of using the high efficient amplifier by transferring the non-constant envelop signal which is high peak to average signal ratio into constant envelop signal. However, the performance degradation is very sensitive to the path mismatch such as an amplitude mismatch and a phase mismatch. In order to improve the path mismatch, the error detection and compensation method is introduced by the use of four test signals. Since the presented method has the closed form solution, the efficient and fast detection is available. The digital-IF structure of LINC system applied by the proposed error detection and compensation algorithm was implemented. The performance was evaluated with the IEEE 802.16 WiMAX baseband sinal which has 7 MHz channel bandwidth and 16-QAM. The Error Vector Magnitude(EVM) of -37.37 dB was obtained through performance test, which meets performance requirement of -24 dB EVM. As a result, the introduced error detection and compensation method was verified to improve the LINC system performance.

Self-Calibration for Direction Finding in Multi-Baseline Interferometer System (멀티베이스라인 인터페로미터 시스템에서의 자체 교정 방향 탐지 방법)

  • Kim, Ji-Tae;Kim, Young-Soo;Kang, Jong-Jin;Lee, Duk-Yung;Roh, Ji-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.4
    • /
    • pp.433-442
    • /
    • 2010
  • In this paper, self-calibration algorithm based on covariance matrix is proposed for compensating amplitude/phase mismatch in multi-baseline interferometer direction finding system. The proposed method is a solution to nonlinear constrained minimization problem which dramatically calibrate mismatch error using space sector concept with cost function as defined in this paper. This method, however, has a drawback that requires an estimated initial angle to determine the proper space sector. It is well known that this type of drawback is common in nonlinear optimization problem. Superior calibration capabilities achieved with this approach are illustrated by simulation experiments in comparison with interferometer algorithm for a varitiety of amplitude/phase mismatch error. Furthermore, this approach has been found to provide an exceptional calibration capabilities even in case amplitude and phase mismatch are more than 30 dB and over $5^{\circ}$, respectively, with sector spacing of less than $50^{\circ}$.

Application of robust fault detection for DC motor considering system uncertainty (불확실성을 고려한 DC Motor의 견실한 이상검출)

  • 김대우;유호준;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.856-859
    • /
    • 1997
  • In this paper we treat the application of fault detection method in DC motor having both model mismatch and noise problems. A fault detection method presented by Kwon et al. (1994) for SISO systems has been here experimented. The model mismatch includes here linearization error as well as undermodelling. Comparisons are made with the real plant, DC motor. The experimental result of robust fault detection method is shown to have good performance via with the alternative fault detection method which do not account noise.

  • PDF

Study on Factors Degrading the Accuracy of Real Beam Modal Decomposition

  • Choi, Kyuhong;Kim, Youngchan;Yun, Youngsun;Noh, Young-Chul;Jun, Changsu
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Three factors that degrade the accuracy of modal decomposition are extensively studied using simulated and measured beams. These include a beam size mismatch, beam center mismatch, and signal-to-noise ratio of the images. The beam size and beam center are scanned using simulated noisy beams, and the result of the modal decomposition is compared with that of real beams. Based on the suggested procedure, error functions of approximately 1-4 × 10-3 can be acquired for real beams. This study provides important information regarding the impact of the three factors on the practical modal decomposition and tolerances of a mismatch, helping estimate the achievable values of the error function in a real beam modal decomposition.

A Capacitor Mismatch Error Cancelation Technique for High-Speed High-Resolution Pipeline ADC

  • Park, Cheonwi;Lee, Byung-Geun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.161-166
    • /
    • 2014
  • An accurate gain-of-two amplifier, which successfully reduces the capacitor mismatch error is proposed. This amplifier has similar circuit complexity and linearity improvement to the capacitor error-averaging technique, but operates with two clock phases just like the conventional pipeline stage. This makes it suitable for high-speed, high-resolution analog-to-digital converters (ADCs). Two ADC architectures employing the proposed accurate gain-of-two amplifier are also presented. The simulation results show that the proposed ADCs can achieve 15-bit linearity with 8-bit capacitor matching.

16-QAM OFDM-Based K-Band LoS MIMO Communication System with Alignment Mismatch Compensation

  • Kim, Bong-Su;Kim, Kwang-Seon;Kang, Min-Soo;Byun, Woo-Jin;Song, Myung-Sun;Park, Hyung Chul
    • ETRI Journal
    • /
    • v.39 no.4
    • /
    • pp.535-545
    • /
    • 2017
  • This paper presents a novel K-band (18 GHz) 16-quadrature amplitude modulation (16-QAM) orthogonal frequency-division multiplexing (OFDM)-based $2{\times}2$ line-of-sight multi-input multi-output communication system. The system can deliver 356 Mbps on a 56 MHz channel. Alignment mismatches, such as amplitude and/or phase mismatches, between the transmitter and receiver antennas were examined through hardware experiments. Hardware experimental results revealed that amplitude mismatch is related to antenna size, antenna beam width, and link distance. The proposed system employs an alignment mismatch compensation method. The open-loop architecture of the proposed compensation method is simple and enables facile construction of communication systems. In a digital modem, 16-QAM OFDM with a 512-point fast Fourier transform and (255, 239) Reed-Solomon forward error correction codecs is used. Experimental results show that a bit error rate of $10^{-5}$ is achieved at a signal-to-noise ratio of approximately 18.0 dB.

A Winner-Take-All Circuit with Offset Cancellation (옵셋이 제거된 승자 독점 회로)

  • Kim, Dong-Soo;Lee, In-Hee;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.26-32
    • /
    • 2008
  • The performance of an analog winner-take-all(WTA) circuit is affected by the corner error and the offset error. Despite the fact that the corner error can be reduced with large transconductance of the transistor, the offset error caused by device mismatch has not been completely studied. This paper presents the complete offset error analysis, and proposes low offset design guidelines and an offset cancellation scheme. The experimental results show good agreement with the theoretical analysis and the drastic improvement of the offset error.

Performance Improvement ofSpeech Recognition Based on SPLICEin Noisy Environments (SPLICE 방법에 기반한 잡음 환경에서의 음성 인식 성능 향상)

  • Kim, Jong-Hyeon;Song, Hwa-Jeon;Lee, Jong-Seok;Kim, Hyung-Soon
    • MALSORI
    • /
    • no.53
    • /
    • pp.103-118
    • /
    • 2005
  • The performance of speech recognition system is degraded by mismatch between training and test environments. Recently, Stereo-based Piecewise LInear Compensation for Environments (SPLICE) was introduced to overcome environmental mismatch using stereo data. In this paper, we propose several methods to improve the conventional SPLICE and evaluate them in the Aurora2 task. We generalize SPLICE to compensate for covariance matrix as well as mean vector in the feature space, and thereby yielding the error rate reduction of 48.93%. We also employ the weighted sum of correction vectors using posterior probabilities of all Gaussians, and the error rate reduction of 48.62% is achieved. With the combination of the above two methods, the error rate is reduced by 49.61% from the Aurora2 baseline system.

  • PDF

A case study on verification of internet survey (인터넷 설문조사의 검증에 관한 사례연구)

  • Ryu, Gui-Yeol;Moon, Young-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.1
    • /
    • pp.11-18
    • /
    • 2014
  • The object of study is to verify the accuracy of internet survey by comparing database data and internet survey. Internet survey was conducted on August, 2012. Respondents were subscribers of KISTI NDSL. Variables were age, organization as demographic variables, number of use, and period of use as attitude variables. Mismatch rates of age, organization, number of use, and period, are 7.5%, 5%, 92%, and 55% respectively. We could estimate the mismatch rate for age as 3% as a pessimistic point of view, and 1% as an optimistic point of view by detail verification. The mismatch rates of organization are 4.5% as a pessimistic point of view, and 2% as an optimistic point of view. The mismatch rates for the frequency of use, the period of use are very high, because measurement error, problems in memory, and internet attitude, etc. Implication of this study is that data of internet survey could be reliable. Many further researches are needed for verification of internet survey.