• Title/Summary/Keyword: Minimal surface system

Search Result 72, Processing Time 0.03 seconds

Effects of Temperature on the Activity of Pulmonary Surfactant of the Rabbit (온도(溫度)가 가토(家兎) 폐포표면(肺胞表面) 활성물질(活性物質)의 활성도(活性度)에 미치는 영향(影響))

  • Kwon, Koing-Bo
    • The Korean Journal of Physiology
    • /
    • v.7 no.2
    • /
    • pp.1-8
    • /
    • 1973
  • Though it has been reported by Clements et al. and Avery et al. that the activity of the pulmonary surfactant can be altered by the temperature changes, a conclusive evidence of the effects of temperature on the surfactant system of the lung is yet to come. In the present study, an attempt was made to observe possible effects of a few different degrees of temperature on the activity of the pulmonary surfactant of the rabbit in vivo and in vitro. The rabbit was sacrificed by blood shedding and both lungs were completely removed. The lung washings, obtained by gently lavaging the left lung with saline, was placed at 1) 4C for 1, 5, 10, 15, 30 and 40 days, and 2) 20C for 1, 2, 3, 4, 5 and 7 days for in vitro experiment. For in vivo experiment, the rabbit was placed at 4C for 4, 8, 12 and 24 hours, and the lung lavage was prepared as described above in the in vitro experiment. Tension-area (T-A) diagram of the lung lavage was recorded automatically by a modified. Langmuir-Wilhelmy balance with a synchronized recording system. The surface tensions thus obtained were compared with those of the normal rabbit, and the results are summarized as follows: 1. The maximal surface tension, minimal surface tension and stability index of the normal rabbit lung lavage were $52.5{\pm}2.3\;dynes/cm,\;4.9{\pm}2.3\;dynes/cm$ and 1.65, respectively. 2. In the group where the lung lavage was placed at 4C in vitro, the maximal and minimal surface tensions, and stability index did not show any noticeable changes comparing with the normal values up to 30 days. On the 40th day of the experiment, a tendency of a slight increase in the surface tensions was observed but the change was not significant. 3. When the lung lavage was placed at 20 C in vitro, the maximal surface tension did not show any appreciable change comparing with the normal except on the 7 th day with a slight increase. The minimal surface tension showed an increased value from the 2nd day, and on the 5 th and 7 th experimental day, markedly increased value was observed. The stability index, on the other hand. showed a marked decrease throughout the entire experiment with the value of 0.71 and 0.53 on the 5th and 7 th day, respectively. 4. In the group where the rabbit was placed at 4 C in vivo, the maximal surface tensions and stability index of the lung lavage showed little change from the normal. The minimal surface tension at 12 experimental hour showed a slight increase, but it returned to the normal value at 24 hour.

  • PDF

High System Performance with Plasmonic Waveguides and Functional Devices

  • Kwong, Wing-Ying
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.319-326
    • /
    • 2010
  • Photonics offers a solution to data communication between logic devices in computing systems; however, the integration of photonic components into electronic chips is rather limited due to their size incompatibility. Dimensions of photonic components are therefore being forced to be scaled down dramatically to achieve a much higher system performance. To integrate these nano-photonic components, surface plasmon-polaritons and/or energy transfer mechanisms are used to form plasmonic chips. In this paper, the operating principle of plasmonic waveguide devices is reviewed within the mid-infrared spectral region at the 2 ${\mu}m$ to 5 ${\mu}m$ range, including lossless signal propagation by introducing gain. Experimental results demonstrate that these plasmonic devices, of sizes approximately half of the operating free-space wavelengths, require less gain to achieve lossless propagation. Through optimization of device performance by means of methods such as the use of new plasmonic waveguide materials that exhibit a much lower minimal loss value, these plasmonic devices can significantly impact electronic systems used in data communications, signal processing, and sensors industries.

Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.651-658
    • /
    • 2009
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

Quality Improvement of Machined Surface in MQL Machining (MQL 가공에서 기계가공면의 표면 품위 향상)

  • Jung, Jong-Yun;Cho, Hyung-Chan;Lee, Choon-Man
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.3
    • /
    • pp.54-61
    • /
    • 2007
  • Machining processes produce high accurate metallic parts in metal working industries. Lubrication for machining enhances quality of machined surface and it prolongs the life of cutting tools. Since lubricant is poisonous to human body and environment, it causes occupational diseases for workers and air pollution in environment. Because of these problems generated, developed countries do not permit the excessive usage of lubricant in machining shops. This research focuses on the development of MQL machining technique that consumes minimal amount of lubricant, which reduces possible outbreak of occupational diseases and air pollution. This research sets experimental equipments for MQL machining. Experiments for this study are designed with major machining parameters in MQL. Through the analysis of experiments, this paper presents the optimal machining parameters.

Development of Multi-Laser Vision System For 3D Surface Scanning (3 차원 곡면 데이터 획득을 위한 멀티 레이져 비젼 시스템 개발)

  • Lee, J.H.;Kwon, K.Y.;Lee, H.C.;Doe, Y.C.;Choi, D.J.;Park, J.H.;Kim, D.K.;Park, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.768-772
    • /
    • 2008
  • Various scanning systems have been studied in many industrial areas to acquire a range data or to reconstruct an explicit 3D model. Currently optical technology has been used widely by virtue of noncontactness and high-accuracy. In this paper, we describe a 3D laser scanning system developped to reconstruct the 3D surface of a large-scale object such as a curved-plate of ship-hull. Our scanning system comprises of 4ch-parallel laser vision modules using a triangulation technique. For multi laser vision, calibration method based on least square technique is applied. In global scanning, an effective method without solving difficulty of matching problem among the scanning results of each camera is presented. Also minimal image processing algorithm and robot-based calibration technique are applied. A prototype had been implemented for testing.

  • PDF

Study on Indoor Thermal Comfort of Advanced EMU (차세대전동차의 실내온열환경 연구)

  • Kwon, Soon-Bark;Park, Duck-Shin;Cho, Young-Min;Park, Sung-Hyuk;Oh, Seh-Chan;Kim, Young-Nam
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1799-1802
    • /
    • 2008
  • More than 7 million people use the Seoul metropolitan subway network daily. This number tends to increase due to the increase of oil price. Indoor air quality of electrical multiple unit (EMU) is strongly affected by outdoor air quality, however, indoor thermal comfort is subjected to heating, ventilating, and air conditioning (HVAC) system of EMU. In general, air temperature, humidity, air velocity, surface temperature, and illumination are key parameters affecting thermal comfort of passenger. It is known that the well-designed HVAC system should improve the thermal comfort of passengers and should increase the energy efficiency of HVAC system also. In this study, we analyzed the thermal comfort of advanced EMU developed by Korea Railroad Research Institute by using the computational fluid dynamics (CFD) in order to find the optimum HVAC system which can improve thermal comfort of passengers with a minimal energy use.

  • PDF

Encapsulation of Flavors by Molecular Inclusion Using $\beta$-Cyclodextrin: Comparison with Spray-drying Process Using Carbohydrate-based Wall Materials

  • Cho, Young-Hee;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.185-189
    • /
    • 2009
  • Microencapsulation of flavor was carried out by molecular inclusion process using $\beta$-cyclodextrin (${\beta}CD$). ${\beta}CD$-flavor complex was prepared at various flavor-to-${\beta}CD$ ratios (1:6-1:12) to determine the effect of ${\beta}CD$ concentration on the inclusion efficiency. Maximum total oil retention and minimal surface oil content were obtained at flavors to ${\beta}CD$ ratio of 1:10. The physical properties and controlled release pattern of flavors from ${\beta}CD$-flavor complex were measured and compared with spray-dried microcapsules prepared using carbohydrate wall system. ${\beta}CD$-flavor complex showed higher total oil retention and surface oil contents, smaller mean particle size, lower moisture uptake, and higher oxidation stability than spray-dried microcapsule. Oxidative stability of flavor was correlated with hygroscopicity of wall materials. The controlled release mechanism was highly affected by temperature and characteristics of wall materials.

Application of a Novel Carbon Regeneration Process for Disposal of APEG Treatment Waste

  • 류건상;Shubender Kapila
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.8
    • /
    • pp.814-818
    • /
    • 1997
  • The chemical waste treatment, APEG (alkali/polyethylene glycol) process has been shown to be effective for the dechlorination of PCBs in transformer oil. Considerable amount of PCBs, however, still remains in the waste exceeding the 25-50 ppm limit set by regulatory agency. A new thermal regeneration technology has been developed in our laboratory for disposal of hazardous organic wastes. Due to the limited oxidation of carbon surface through the reverse movement of flame front to oxidant flow, this technology was termed counterflow oxidative system (COS). Specially, the oxidant flow in the COS process is a principal parameter which determines the optimum conditions regarding acceptable removal and destruction efficiency of adsorbed organic wastes at minimal carbon loss. The COS process, under optimum conditions, was found to be very effective and the removal and destruction efficiency of 99.99% or better was obtained for residual PCBs in the waste while bulk (≥90%) of carbon was recovered. Any toxic formation of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzo furans (PCDFs) were not detected in the regenerated carbon and impinger traps. The results of surface area measurement showed that the adsorptive property of regenerated carbon is mostly reclaimed during the COS process.

A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System (Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구)

  • Ham, Yunyoung;Park, Suyeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

Optimization of Emulsification and Spray Drying Process for the Microencapsulation of Flavor Compounds (향기성분 미세캡슐화를 위한 유화 및 분무건조 공정 최적화)

  • Cho, Young-Hee;Shin, Dong-Suck;Park, Ji-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.132-139
    • /
    • 2000
  • This study was conducted to optimize the emulsion process and the spray drying process for the microencapsulation of flavor compounds. Using the wall system selected, emulsion process for microencapsulation was optimized on the change of the pressure of piston-type homogenizer. Emulsification pressure of 34.5 MPa was found to be the most suitable for preparing flavor emulsion. Effects of drying temperature and atomizer speed of the spray drier on total oil, surface oil, and flavor release of the flavor powder were investigated using response surface methodology. The optimum spray drying conditions for minimal surface oil and flavor release and maximum total oil were $170{\circ}C$ inlet temperature and 15,000 rpm atomizer speed. The spray-dried powder processed with the highest drying temperature showed spherically-shaped particles with smooth surface.

  • PDF