• Title/Summary/Keyword: Microwave Beam

Search Result 125, Processing Time 0.041 seconds

Analysis of Surface Plasmon Resonance on Periodic Metal Hole Array by Diffraction Orders

  • Hwang, Jeong-U;Yun, Su-Jin;Gang, Sang-U;No, Sam-Gyu;Lee, Sang-Jun;Urbas, Augustine;Ku, Zahyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.176-177
    • /
    • 2013
  • Surface plasmon polaritons (SPPs) have attracted the attention of scientists and engineers involved in a wide area of research, microscopy, diagnostics and sensing. SPPs are waves that propagate along the surface of a conductor, usually metals. These are essentially light waves that are trapped on the surface because of their interaction with the free electrons of conductor. In this interaction, the free electrons respond collectively by oscillating in resonance with the light wave. The resonant interaction between the surface charge oscillation and the electromagnetic field of the light constitutes the SPPs and gives rise to its unique properties. In this papers, we studied theoretical and experimental extraordinary transmittance (T) and reflectance (R) of 2 dimensional metal hole array (2D-MHA) on GaAs in consideration of the diffraction orders. The 2d-MHAs was fabricated using ultra-violet photolithography, electron-beam evaporation and standard lift-off process with pitches ranging from 1.8 to $3.2{\mu}m$ and diameter of half of pitch, and was deposited 5-nm thick layer of titanium (Ti) as an adhesion layer and 50-nm thick layer of gold (Au) on the semiinsulating GaAs substrate. We employed both the commercial software (CST Microwave Studio: Computer Simulation Technology GmbH, Darmstadt, Germany) based on a finite integration technique (FIT) and a rigorous coupled wave analysis (RCWA) to calculate transmittance and reflectance. The transmittance was measured at a normal incident, and the reflectance was measured at variable incident angle of range between $30^{\circ}{\sim}80^{\circ}$ with a Nicolet Fourier transmission infrared (FTIR) spectrometer with a KBr beam splitter and a MCT detector. For MHAs of pitch (P), the peaks ${\lambda}$ max in the normal incidence transmittance spectra can be indentified approximately from SP dispersion relation, that is frequency-dependent SP wave vector (ksp). Shown in Fig. 1 is the transmission of P=2.2 um sample at normal incidence. We attribute the observation to be a result of FTIR system may be able to collect the transmitted light with higher diffraction order than 0th order. This is confirmed by calculations: for the MHAs, diffraction efficiency in (0, 0) diffracted orders is lower than in the (${\pm}x$, ${\pm}y$) diffracted orders. To further investigate the result, we calculated the angular dependent transmission of P=2.2 um sample (Fig. 2). The incident angle varies from 30o to 70o with a 10o increment. We also found the splitting character on reflectance measurement. The splitting effect is considered a results of SPPs assisted diffraction process by oblique incidence.

  • PDF

Design of A Microstrip Linear Tapered Slot Antenna (마이크로스트립 선형 테이퍼형 슬롯 안테나 설계)

  • Jang, Jae-Sam;Kim, Cheol-Bok;Lee, Ho-Sang;Jung, Young-Ho;Jo, Dong-Ki;Lee, Mun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.5
    • /
    • pp.40-45
    • /
    • 2008
  • In this paper, a microstrip linear tapered slot antenna is designed. A tapered slot antenna(TSA) has many advantages such as low profile, low weight, easy fabrication, and compatibility with monolithic microwave integrated circuits(MMIC). In addition, it has demonstrated multi octave bandwidth, moderately high gain, and symmetrical E- and H-plane beam patterns. A feed network is implemented with transition between a microstrip and a slot line for the microstrip linear tapered slot antenna. The transition is consist of two sides. One side has a microstrip line, the other side has a slot line. The dimensions of the microstrip and slot line are ${\lambda}_m/4$ and ${\lambda}_s/4$ at the center of the cross section of the microstrip and slot line. In order to get broad bandwidth antenna characteristics, the tapered length is chosen as $4{\lambda}_o$ and termination width is chosen as $1.75{\lambda}_o$. Experimental results show that the microstrip tapered slot antenna has symmetrical E- and H-plane beam patterns with around 5GHz of bandwidth at center frequency of 5.0GHz.

Equi-Phase Microwave Power Divider Using Fixed Phase Shifters (고정형 위상 천이기를 이용한 동일 위상 마이크로파 전력 분배기)

  • Kim, Jung Ouk;Kim, Hansol;An, Boram;Kim, Sujeong;Kim, Chan-Ho;Yoon, Won-Sang;Han, Sang-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.8
    • /
    • pp.576-582
    • /
    • 2018
  • In this paper, a planar equi-phase power divider is proposed using fixed phase shifters. As the integrability of a phased array antenna increases for accurate beam steering, a conventional method to excite equi-phase signals to all element antennas, extending the feedline, has spatial limitations. Therefore, the planar equi-phase power divider is designed using a defected ground structure with a planar phase shift function without intentional feedline extension. The defected ground structure has been considered for a low insertion loss and a controllable phase shift, whereas the power divider has been designed and implemented with a port-to-port isolation and a planar configuration.

Design and Operational Charcteristics of 150MW Pulse Modulator (150MW 펄스 MODULATOR의 설계 및 동작특성)

  • Park, S.S.;Oh, J.S.;Lee, K.T.;Kim, S.H.;Son, Y.K.;Choi, K.;Chang, S.D.;Park, S.W.;Nam, S.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.928-930
    • /
    • 1992
  • The design beam energy of PLS(Pohang Accelerator Laboratory) Linac is 2Gev. The linac employs total 11 units of modulators and klystrons. The maximum peak output powers of the modulators are 200MW (400kV, 500A, 4.4$\mu$S flat-top, 800$\Omega$ load) to drive the klystrons which have the peak microwave power of 80MW. Prior to the development of the 200MW modulators, a prototype 150MW modulator has been constructed and tested. We have achieved output pulses of 350kV, 420A and 3.5$\mu$S flat-top with 840$\Omega$ water load. In this article, the test results and computer simulations of charging, De-Q'ing, and discharging are presented.

  • PDF

Formation of a thin nitrided GaAs layer

  • Park, Y.J.;Kim, S.I.;Kim, E.K.;Han, I.K.;Min, S.K.;O'Keeffe, P.;Mutoh, H.;Hirose, S.;Hara, K.;Munekata, H.;Kukimoto, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1996.06a
    • /
    • pp.40-41
    • /
    • 1996
  • Nitridation technique has been receiving much attention for the formation of a thin nitrided buffer layer on which high quality nitride films can be formedl. Particularly, gallium nitride (GaN) has been considered as a promising material for blue-and ultraviolet-emitting devices. It can also be used for in situ formed and stable passivation layers for selective growth of $GaAs_2$. In this work, formation of a thin nitrided layer is investigated. Nitrogen electron cyclotron resonance(ECR)-plasma is employed for the formation of thin nitrided layer. The plasma source used in this work is a compact ECR plasma gun3 which is specifically designed to enhance control, and to provide in-situ monitoring of plasma parameters during plasma-assisted processing. Microwave power of 100-200 W was used to excite the plasma which was emitted from an orifice of 25 rnm in diameter. The substrate were positioned 15 em away from the orifice of plasma source. Prior to nitridation is performed, the surface of n-type (001)GaAs was exposed to hydrogen plasma for 20 min at $300{\;}^{\circ}C$ in order to eliminate a native oxide formed on GaAs surface. Change from ring to streak in RHEED pattern can be obtained through the irradiation of hydrogen plasma, indicating a clean surface. Nitridation was carried out for 5-40 min at $RT-600{\;}^{\circ}C$ in a ECR plasma-assisted molecular beam epitaxy system. Typical chamber pressure was $7.5{\times}lO^{-4}$ Torr during the nitridations at $N_2$ flow rate of 10 seem.(omitted)mitted)

  • PDF

Design of 4×4 Array Synthesis Horn Antenna and Radiated Power Measurement by Magnetron (4×4 배열 합성 혼 안테나 및 고출력 마그네트론에 의한 방사전력 측정)

  • Ko, Dong-Ok;Shin, Jae-Yoon;Woo, Jong-Myung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.108-115
    • /
    • 2016
  • In this paper, the array synthesis horn antenna was designed and measured a radiation power after connecting magnetron. The proposed antenna was designed on the basis of the $4{\times}4$ array synthesis horn antenna characteristics. For suppressing a back-lobe, 2 step short-stub structures were attached to synthesis horn aperture upper and lower. The designed antenna has FBR(Front to Back Ratio) of 39.7 dB. HPBW(Half Power Beam Width) of the E-plane and the H-plane are $8.86^{\circ}$ and $7.35^{\circ}$ each in the measurement. For measuring a radiation power of array antenna that use a magnetron, the waveguide adaptor was designed and connected magnetron with horn antenna. Also, microstrip line coupler that replace a dielectric material with an air gap was designed for measuring a high power. As a result, average radiation output power of the $4{\times}4$ array synthesis horn antenna that connect a four magnetrons had a 0.063W.

MBE Growth and Electrical and Magnetic Properties of CoxFe3-xO4 Thin Films on MgO Substrate

  • Nguyen, Van Quang;Meny, Christian;Tuan, Duong Ahn;Shin, Yooleemi;Cho, Sunglae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.370.1-370.1
    • /
    • 2014
  • Giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), and magnetic random-access memory (MRAM) are currently active areas of research. Magnetite, Fe3O4, is predicted to possess as half-metallic nature, ~100% spin polarization (P), and has a high Curie temperature (TC~850 K). On the other hand, Spinel ferrite CoFe2O4 has been widely studies for various applications such as magnetorestrictive sensors, microwave devices, biomolecular drug delivery, and electronic devices, due to its large magnetocrystalline anisotropy, chemical stability, and unique nonlinear spin-wave properties. Here we have investigated the magneto-transport properties of epitaxial CoxFe3-xO4 thin films. The epitaxial CoxFe3-xO4 (x=0; 0.4; 0.6; 1) thin films were successfully grown on MgO (100) substrate by molecular beam epitaxy (MBE). The quality of the films during growth was monitored by reflection high electron energy diffraction (RHEED). From temperature dependent resistivity measurement, we observed that the Werwey transition (1st order metal-insulator transition) temperature increased with increasing x and the resistivity of film also increased with the increasing x up to $1.6{\Omega}-cm$ for x=1. The magnetoresistance (MR) was measured with magnetic field applied perpendicular to film. A negative transverse MR was disappeared with x=0.6 and 1. Anomalous Hall data will be discussed.

  • PDF

Design of High Average Power Pulse Transformer for 30-MW Klystron of L-Band Linac Application (산업용 선형가속기 시스템 적용을 위한 30-MW 클라이스트론용 고 평균전력 펄스 트랜스포머의 설계)

  • Jang, S.D.;Son, Y.G.;Gwon, S.J.;Oh, J.S.;Bae, Y.S.;Lee, H.G.;Moon, S.I.;Kim, S.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1550-1551
    • /
    • 2006
  • An L-band linear accelerator system for e-beam sterilization is under design for bio-technology application. The klystron-modulator system as RF microwave source has an important role as major components to offer the system reliability for long time steady state operation. A PFN line type pulse generator with a peak power of 71.5-MW, $7{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present a system overview and initial design results of the high power pulse transformer.

  • PDF

Parameter Evaluation of High-Power Pulse Transformer for L-Band 30-MW Klystron (L-band 30-MW 클라이스트론용 고출력 펄스트랜스포머의 파라미터 평가)

  • Jang, S.D.;Son, Y.G.;Kwon, S.J.;Oh, J.S.;Kim, S.H.;Yang, H.R.;Moon, S.I.;Kwon, B.H.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1079-1081
    • /
    • 2007
  • An L-band Linear Accelerator System for E-beam sterilization is under construction for bio-technology application. The klystron-modulator system as an RF microwave source has an important role as major components to offer the system reliability for long time steady-state operations. A PFN line type pulse generator with a peak power of 71.5-MW, $7\;{\mu}s$, 285 pps is required to drive a high-power klystron. The high power pulse transformer has a function of transferring pulse energy from a pulsed power source to a high power load. The pulse transformer producing a pulse with a peak voltage of 275 kV is required to produce 30-MW peak and 60 kW average RF output power at the frequency of 1.3-GHz. We have designed the high power pulse transformer with 1:13 step-up ratio. The peak and average power capability is 71.5-MW (275 kV, 260 A at load side with $7\;{\mu}s$ pulse width) and 130 kW, respectively. In this paper, we present measurements and its analysis on the design parameters, and an initial test result as well as a design concept on the high-power pulse transformer.

  • PDF

A Inclined Slot-excited Circular Plasma Source with a Cusp Magnetic Field

  • You, H.J.;Kim, D.W.;Koo, M.;Jang, S.W.;Jung, Y.H.;Lee, B.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.435-435
    • /
    • 2010
  • A inclined slot-excited plasma source is newly designed and constructed for higher flux HNB(Hyperthermal Neutral Beam) generation. The present source is different from the vertical SLAN(SLot ANtenna) sources [1] in two aspects. One is that the slots are inclined, and the other is that the magnetic field is configured to a cusp type. These modifications are intended to make the source plasma operated in sub-milli-torr pressure regime and as thin as possible, both of which is to get higher HNB flux by decreasing the re-ionization rate of the reflected atoms from the neutralizer [2]. The plasma is generated in a quartz tube of internal diameter 170 mm enclosed in a aluminum application chamber of larger diameter 250 mm. The microwave power is fed to the plasma chamber by 8 inclined slots cut into the application chamber wall. The slots are coupled the chamber to a WR280 waveguide wound around it to form a ring resonator. In order to make two slots $\lambda_g/2$ apart in phase, the adjacent slots are rotated in opposite directions. The rotation angle of the slots are set to $60^{\circ}$ from the chamber axis. Between the quartz chamber and the aluminum cylindrical chamber 8 NdFeB magnets are equally spaced and fixed to form the cusp magnetic field confinement and ECR (Electron Cyclotron Resonance) field. In this presentation, the magnetic and electromagnetic simulations, and the measured plasma parameters are given for both the inclined and the vertical slot-excited plasma sources. We also discuss how the sources can be tailored to suit better-performing HNB sources.

  • PDF