• 제목/요약/키워드: Microstructure development

검색결과 654건 처리시간 0.023초

Development of probabilistic primary water stress corrosion cracking initiation model for alloy 182 welds considering thermal aging and cold work effects

  • Park, Jae Phil;Yoo, Seung Chang;Kim, Ji Hyun;Bahn, Chi Bum
    • Nuclear Engineering and Technology
    • /
    • 제53권6호
    • /
    • pp.1909-1923
    • /
    • 2021
  • We experimentally investigated the effects of thermal aging and cold work on the microstructure, mechanical properties, and primary water stress corrosion cracking (PWSCC) initiation time for Alloy 182 welds. The effects of thermal aging and cold work on the PWSCC initiation time of Alloy 182 were modeled based on the plastic energy concept and the PWSCC initiation data of this study and previous reports by considering censored data. Based on the results, it is estimated that the PWSCC resistance of the Alloy 182 weld firstly increases and then decreases with thermal aging time when the applied stress is kept constant.

Pozzolanicity identification in mortars by computational analysis of micrographs

  • Filho, Rafael G.D. Molin;Rosso, Jaciele M.;Volnistem, Eduardo A.;Vanderlei, Romel D.;Longhi, Daniel A.;de Souza, Rodrigo C.T.;Paraiso, Paulo R.;Jorge, Luiz M. de M.
    • Computers and Concrete
    • /
    • 제27권2호
    • /
    • pp.175-184
    • /
    • 2021
  • The incorporation of pozzolans to Portland cement pastes adds value in the development of new materials for the construction industry. This study presents a new computational method, complementary to the pozzolanic identification by compressive strength at 28 days method, for supporting the validation of pozzolanic mortars for non-structural purposes. An algorithm capable of classifying the pixels of micrographs of specimens fragments was developed. Therefore, comparative analyses were generated from fractional Gaussian representations in four intervals of the same amplitude that indicated the predispositions to form larger void indices (intervals 1 and 2). The results showed that the computational method indicators are in accordance with the physical and chemical indicators.

이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성 (Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

Fabrication of $CeO_2$ Buffer Layer Using MOD Process

  • Kim, Young-Kuk;Yoo, Jai-Moo;Chung, Kook-Chae;Ko, Jae-Woong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권4호
    • /
    • pp.19-21
    • /
    • 2006
  • Biaxially textured Ni was fabricated by electrodeposition process and delaminated from the biaxially textured cathode surface for further buffer layer deposition process. Those electrode posited Ni substrates showed well-developed biaxial texture and smooth surface. In order to improve the thermal stability of Ni substrates, Mn was alloyed by adding Mn precursor into the electrodeposition bath. Subsequently, $CeO_2$ buffer layers are deposited by MOD process to prevent interfacial reaction between superconductor and substrates. In particular, Bismuth oxide was added to $CeO_2$ to realize lower temperature processing of buffer layers. The microstructure and texture development of each layers have been investigated. Preliminary results shows that all electro/chemical process can be a candidate for cost effective route to YBCO coated conductor.

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF

증점제를 첨가한 매입말뚝 주면고정액의 실험적 연구 (Experimental study of file filling meterial with A thickener)

  • 고혜빈;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.21-22
    • /
    • 2020
  • In this study, the pile filling materials of the pile in drilled piling was studied. cement milk is mostly used as the filling materials of bored pile. The use of filling material based on cement milk is inefficient at field construction because it needs a lot of the charging mass. thickening agent was added to the cement milk to perform settlement estimation experiment on a circular cylinder, and as a result of examining the compressive strength of the day, it was found that the settlement estimation was significantly reduced. However, the strength was relatively low, it was confirmed that there was no problem with the regulation because the main surface fixative required relatively low strength.

  • PDF

CSA 및 ACA계 결합재를 적용한 보수재료의 미세구조 및 역학적 성능 (Microstructures and Mechanical Properties of Repair Materials Using CSA and ACA-based Binders)

  • 이승태;정훈신;권태한;김용
    • 한국건설순환자원학회논문집
    • /
    • 제11권3호
    • /
    • pp.202-209
    • /
    • 2023
  • In this study, microstructures and mechanical properties of repair materials using calcium sulfoaluminate (CSA) and/or amorphous calcium aluminate (ACA) cements were experimentally investigated. By XRD ansysis, the hydrates formed in repair materials were identified. In addition, the microstructures of repair materials were visually examined through SEM observation. Setting time of mortars made with repair materials were measured. The strength development and ultrasonic velocity of the mortars were also evaluated at the predetermined ages. As a result, it seems that ACA showed a benefit effect with respect to mechanical properties of mortars.

이산화탄소 포집 성능 향상을 위한 MIL-53 금속-유기 골격체 코팅의 최적화 (Optimization of MIL-53 Metal-organic Framework Coatings for Enhanced Durability in Carbon Dioxide Capture)

  • 김대현;이성준;안동규;김창래
    • 소성∙가공
    • /
    • 제33권4호
    • /
    • pp.261-269
    • /
    • 2024
  • This study aimed to optimize the MIL-53 metal-organic framework coatings for enhanced durability in carbon dioxide capture applications. We synthesized MIL-53 powders using a hydrothermal method and deposited them on stainless-steel substrates by spin coating at various speeds, ranging from 300 to 2,000 rpm. The microstructure, surface properties, and tribological characteristics of the coatings were analyzed systematically. The results indicated that the spin speed significantly impacted the coating uniformity and defect formation. Coatings prepared at moderate speeds of 500 to 1,000 rpm exhibited optimal thickness and density, resulting in superior wear resistance. The tribological tests revealed that the coatings prepared at 700 to 1000 rpm had the lowest wear rates. These findings offer valuable insights for the development of durable MOF-based coatings for carbon dioxide capture and other applications requiring long-term stability under mechanical stress.

레이저 클래딩법을 이용한 AISI 316L 스테인리스강 내 Y2O3입자의 분산거동 (Dispersion Behaviors of Y2O3 Particles Into Aisi 316L Stainless Steel by Using Laser Cladding Technology)

  • 박은광;홍성모;박진주;이민구;이창규;설경원;이양규
    • 한국분말재료학회지
    • /
    • 제20권4호
    • /
    • pp.269-274
    • /
    • 2013
  • The present work investigated the dispersion behavior of $Y_2O_3$ particles into AISI 316L SS manufactured using laser cladding technology. The starting particles were produced by high energy ball milling in 10 min for prealloying, which has a trapping effect and homogeneous dispersion of $Y_2O_3$ particles, followed by laser cladding using $CO_2$ laser source. The phase and crystal structures of the cladded alloys were examined by XRD, and the cross section was characterized using SEM. The detailed microstructure was also studied through FE-TEM. The results clearly indicated that as the amount of $Y_2O_3$ increased, micro-sized defects consisted of coarse $Y_2O_3$ were increased. It was also revealed that homogeneously distributed spherical precipitates were amorphous silicon oxides containing yttrium. This study represents much to a new technology for the manufacture and maintenance of ODS alloys.

SiCp입자강화 Al 복합재료의 내열 및 마모특성 (Heat and Wear Resistance Characterization of SiCp Reinforced Al Matrix Composites)

  • 김석원;김완기;우기도;안행근
    • 한국주조공학회지
    • /
    • 제20권6호
    • /
    • pp.377-385
    • /
    • 2000
  • Al matrix composites as the most promising MMCs can be expected to be excellent engineering materials in the nearest future. So as to improve material properties of composite, many manufacturing processes have been developed. Among them, squeeze casting process which offers fine microstructure and near-net-shape is one of the most successful MMCs manufacturing processes. But, in case of with subsieve size particles (under 44 ${\mu}m$), it is very difficult to homogeneously distribute particles in matrix of Al matrix composite by various casting processes, including squeeze casting used so far. Duplex process which was developed in previous study was used to distribute the particle of subsieve size more homogeneously in matrix of Al matrix composite. Microstructures, wear and heat resistance characterization of Al-Si-Cu-Mg-(Ni)/SiCp manufactured by duplex process were examined to clarify the effect of manufacturing conditions, particle size of reinforcement and alloying elements. Al matrix composites reinforced with SiCp(10 ${\mu}m$) have the lowest wear amount among composites reinforced with 3 ${\mu}m$, 5 ${\mu}m$ and 10 ${\mu}m$ SiCp. The wear amount of Al matrix composites with 10 wt.% SiCp(3, 5, 10 ${\mu}m$) was decreased according to the increase of the sliding speed because abrasive wear takes place at high sliding speed of 4m/s and worn debris with block type occurs at low sliding speed of 1m/s. As for heat resistance, it is made clear that remarkable heat resistance property can be obtained by addition of Ni element in Al matrix composites.

  • PDF