DOI QR코드

DOI QR Code

Development of probabilistic primary water stress corrosion cracking initiation model for alloy 182 welds considering thermal aging and cold work effects

  • Park, Jae Phil (School of Mechanical Engineering, Pusan National University) ;
  • Yoo, Seung Chang (School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Kim, Ji Hyun (School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology) ;
  • Bahn, Chi Bum (School of Mechanical Engineering, Pusan National University)
  • Received : 2020.09.23
  • Accepted : 2020.12.06
  • Published : 2021.06.25

Abstract

We experimentally investigated the effects of thermal aging and cold work on the microstructure, mechanical properties, and primary water stress corrosion cracking (PWSCC) initiation time for Alloy 182 welds. The effects of thermal aging and cold work on the PWSCC initiation time of Alloy 182 were modeled based on the plastic energy concept and the PWSCC initiation data of this study and previous reports by considering censored data. Based on the results, it is estimated that the PWSCC resistance of the Alloy 182 weld firstly increases and then decreases with thermal aging time when the applied stress is kept constant.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Nuclear Safety (KINS, No. 202000370001) and Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (No. 1403006). This work was also supported by the "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20184010201660).

References

  1. T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties, J. Propul. Power 22 (2006) 361-374. https://doi.org/10.2514/1.18239
  2. T.H. Lee, I.S. Hwang, H.D. Kim, J.H. Kim, Techniques for intergranular crack formation and assessment in alloy 600 base and alloy 182 weld metals, Nuclear Engineering and Technology 47 (2015) 102-114. https://doi.org/10.1016/j.net.2014.08.002
  3. K. Sieradzki, R.C. Newman, Stress-corrosion cracking, J. Phys. Chem. Solid. 48 (1987) 1101-1113. https://doi.org/10.1016/0022-3697(87)90120-X
  4. P. Scott, M.C. Meunier, Materials Reliability Program: Review of Stress Corrosion Cracking of Alloys 182 and 82 in PWR Primary Water Service, EPRI Palo Alto CA, 2007, 1015427.
  5. W. Lunceford, T. DeWees, P. Scott, EPRI Materials Degradation Matrix, vol. 3, EPRI, Palo Alto, CA, USA 3002000628, 2013.
  6. G.A. White, N.S. Nordmann, J. Hickling, C.D. Harrington, Development of Crack Growth Rate Disposition Curves for Primary Water Stress Corrosion Cracking (PWSCC) of Alloy 82, 182, and 132 Weldments, TMS (The Minerals, Metals and Materials Society, 2005.
  7. P. Scott, M.C. Meunier, O. Calonne, M.P. Foucault, P. Combrade, C. Amzallag, Comparison of Laboratory and Field Experience of PWSCC in Alloy 182 Weld Metal, in: Proceedings of the 13th International Conference Environment Degradation of Materials in Nuclear Power Systems-Water Reactors, CDROM, 2007.
  8. Y.S. Lim, S.S. Hwang, S.W. Kim, H.P. Kim, Primary water stress corrosion cracking behavior of an Alloy 600/182 weld, Corrosion Sci. 100 (2015) 12-22. https://doi.org/10.1016/j.corsci.2015.06.005
  9. C. Amzallag, J.-M. Boursier, C. Pages, C. Gimond, Stress Corrosion Life Assessment of 182 and 82 Welds Used in PWR Components, in: 10th International Conference Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 2002.
  10. D.O. Harris, D.D. Dedhia, S.C. Lu, Theoretical and Users Manual for Pc-PRAISE: A Probabilistic Fracture Mechanics Computer Code for Piping Reliability Analysis, Nuclear Regulatory Commission, United States). Div. of, Washington, DC, 1992.
  11. P. Scott, R. Kurth, A. Cox, R. Olson, D. Rudland, Development of the PRO-LOCA probabilistic fracture mechanics code, MERIT final report, SSM Report 46 (2010).
  12. M. Erickson, F. Ammirato, B. Brust, D. Dedhia, E. Focht, M. Kirk, C. Lange, R. Olsen, P. Scott, D. Shim, Models and Inputs Selected for Use in the xLPR Pilot Study, Electric Power Research Institute (EPRI), Palo Alto, CA, USA, 2011.
  13. D. Rudland, C. Harrington, R. Dingreville, Development of the extremely low probability of rupture (xLPR) Version 2.0 code. Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, 2015. V06BT06A050.
  14. G. Troyer, S. Fyfitch, K. Schmitt, G. White, C. Harrington, Dissimilar Metal Weld PWSCC Initiation Model Refinement for xLPR Part I: a Survey of Alloy 82/182/132 Crack Initiation Literature, in: Proceedings of the 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Canada, Ottawa, ON, 2015, pp. 9-13.
  15. F. Vaillant, J.-M. Boursier, C. Amzallag, C. Bibollet, S. Pons, Environmental behaviour and weldability of Ni-base weld metals in PWRs, Rev. Gen. Nucleaire (2007) 62-71.
  16. Y.S. Garud, Stress Corrosion Cracking Initiation Model for Stainless Steel and Nickel Alloys, Electric Power Research Institute (EPRI), Palo Alto, CA, USA, 2009.
  17. Y.S. Garud, R.S. Pathania, A Simplified Model for SCC Initiation Susceptibility in Alloy 600, with the Influence of Cold Work Layer and Strength Characteristics, in: Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Wiley Online Library, 1999, pp. 261-268.
  18. R. Konings, Comprehensive Nuclear Materials, Elsevier, 2011.
  19. J.W. Martin, Precipitation Hardening: Theory and Applications, Butterworth-Heinemann, 2012.
  20. S.C. Yoo, K.J. Choi, T. Kim, S.H. Kim, J.Y. Kim, J.H. Kim, Microstructural evolution and stress-corrosion-cracking behavior of thermally aged Ni-Cr-Fe alloy, Corrosion Sci. 111 (2016) 39-51. https://doi.org/10.1016/j.corsci.2016.04.051
  21. J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, S.C. Yao, The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690, Metal. Trans. A 20 (1989) 2057-2067. https://doi.org/10.1007/BF02650292
  22. R. Celin, F. Tehovnik, Degradation of a Ni-Cr-Fe alloy in a pressurised-water nuclear power plant, Mater. Technol. 45 (2011) 151-157.
  23. K.J. Choi, J.J. Kim, B.H. Lee, C.B. Bahn, J.H. Kim, Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces, J. Nucl. Mater. 441 (2013) 493-502. https://doi.org/10.1016/j.jnucmat.2013.07.003
  24. S.C. Yoo, K.J. Choi, C.B. Bahn, S.H. Kim, J.Y. Kim, J.H. Kim, Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints, J. Nucl. Mater. 459 (2015) 5-12. https://doi.org/10.1016/j.jnucmat.2015.01.009
  25. S.A. Tukur, M.S. Dambatta, A. Ahmed, N.M. Mu'az, Effect of heat treatment temperature on mechanical properties of the AISI 304 stainless steel, Intl J Innov Res Sci, Eng Technol. 3 (2014) 9516-9520.
  26. J.-Y. Jeon, Y.-J. Kim, J.-S. Kim, Computational simulation of cold work effect on PWSCC growth in Alloy 600TT steam generator, J. Mech. Sci. Technol. 30 (2016) 689-696. https://doi.org/10.1007/s12206-016-0125-6
  27. T. Maeguchi, K. Sakima, K. Sato, K. Fujimoto, Y. Nagoshi, K. Tsutsumi, PWSCC Susceptibility of Alloy 690, 52 and 152, in: Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Springer, 2019, pp. 485-500.
  28. M. Toloczko, Z. Zhai, S. Bruemmer, SCC Initiation Behavior of Alloy 182 in PWR Primary Water, in: Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Springer, 2019, pp. 137-160.
  29. T. Shoji, Z. Lu, H. Murakami, Formulating stress corrosion cracking growth rates by combination of crack tip mechanics and crack tip oxidation kinetics, Corrosion Sci. 52 (2010) 769-779. https://doi.org/10.1016/j.corsci.2009.10.041
  30. D.D. Pruthi, M.S. Anand, R.P. Agarwala, Diffusion of chromium in inconel-600, J. Nucl. Mater. 64 (1977) 206-210. https://doi.org/10.1016/0022-3115(77)90026-5
  31. P. Scott, Experimental Program on the Effects of Surface Condition on Primary Water Stress Corrosion Cracking of Alloy 182 Welds, 2007.
  32. ASTM, Standard Practice for Microetching Metals and Alloys, 2015. E407-07.
  33. F. Bachmann, R. Hielscher, H. Schaeben, Texture Analysis with MTEX-free and Open Source Software Toolbox, in: Solid State Phenomena, Trans Tech Publ, 2010, pp. 63-68.
  34. ASTM, ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, USA, 2016.
  35. ASTM, Standard, Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens, 2009. ASTM G30-90.
  36. D. Systemes, Abaqus 2016 User's Manual, 2016.
  37. Special Metals, INCONEL alloy 600, accessed June 20, https://www.specialmetals.com/assets/smc/documents/alloys/inconel/inconel-alloy-600.pdf, 2020.
  38. R.D. Grampurohit, H. Prasanna, IDENTIFICATION OF DISLOCATIONS, GRAIN BOUNDARY SLIDING AND POINT DEFECTS WITH THE AID OF SEM ANALYSIS, 2017.
  39. C.T. Rueden, J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena, K.W. Eliceiri, ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinf. 18 (2017) 529. https://doi.org/10.1186/s12859-017-1934-z
  40. G. Bao, M. Yamamoto, K. Shinozaki, Precipitation and Cr depletion profiles of Inconel 182 during heat treatments and laser surface melting, J. Mater. Process. Technol. 209 (2009) 416-425. https://doi.org/10.1016/j.jmatprotec.2008.02.021
  41. X.-J. Di, X.-Q. Liu, C.-X. Chen, B.-S. Wang, X.-J. Guo, Effect of post-weld heat treatment on the microstructure and corrosion resistance of deposited metal of a high-chromium nickel-based alloy, Acta Metall. Sin. 29 (2016) 1136-1143. https://doi.org/10.1007/s40195-016-0504-0
  42. Y.S. Lim, H.P. Kim, H.D. Cho, H.H. Lee, Microscopic examination of an Alloy 600/182 weld, Mater. Char. 60 (2009) 1496-1506. https://doi.org/10.1016/j.matchar.2009.08.005
  43. R.A. Page, Stress corrosion cracking of Alloys 600 and 690 and Nos. 82 and 182 weld metals in high temperature water, Corrosion 39 (1983) 409-421. https://doi.org/10.5006/1.3593883
  44. Q.J. Peng, H. Yamauchi, T. Shoji, Investigation of dendrite-boundary microchemistry in alloy 182 using auger electron spectroscopy analysis, Metall. Mater. Trans. 34 (2003) 1891-1899. https://doi.org/10.1007/s11661-003-0154-5
  45. Q. Peng, J. Hou, Y. Takeda, T. Shoji, Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182, Corrosion Sci. 67 (2013) 91-99. https://doi.org/10.1016/j.corsci.2012.10.012
  46. Y. Sakakibara, K. Kubushiro, Stress evaluation at the maximum strained state by EBSD and several residual stress measurements for plastic deformed austenitic stainless steel, World J. Mech. 7 (2017) 195-210. https://doi.org/10.4236/wjm.2017.78018
  47. MTEX, (n.d EBSD-Denoising. https://mtex-toolbox.github.io/EBSDDenoising.html. (Accessed 13 May 2020).
  48. F. Roters, P. Eisenlohr, T.R. Bieler, D. Raabe, Crystal Plasticity Finite Element Methods: in Materials Science and Engineering, John Wiley & Sons, 2011.
  49. T.H. Lee, Y.J. Lee, S.H. Joo, H.H. Nersisyan, K.T. Park, J.H. Lee, Intergranular M23C6 carbide precipitation behavior and its effect on mechanical properties of Inconel 690 tubes, Metall. Mater. Trans.: Physical Metallurgy and Materials Science 46 (2015) 4020-4026, https://doi.org/10.1007/s11661-015-3003-4.
  50. L.E. Thomas, M.J. Olszta, B.R. Johnson, S.M. Bruemmer, Microstructural Characterization of Primary Water Stress-Corrosion Cracks in Alloy 182 Welds from PWR Components and Laboratory Tests, in: The 14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Virginia Beach, 2009.
  51. H. Xu, S. Fyfitch, J.W. Hyres, Laboratory Investigation of PWSCC of CRDM Nozzle 3 and its J-Groove Weld on the Davis-Besse Reactor Vessel Head, in: T.R. Allen, P.J. King, L. Nelson (Eds.), Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Systems-Water Reactors, TMS, Pittsburgh, PA, 2005, pp. 833-842.
  52. W. Weibull, Wide applicability, J. Appl. Mech. 103 (1951) 293-297. https://doi.org/10.1115/1.4010337
  53. J.I. McCool, Using the Weibull Distribution: Reliability, Modeling, and Inference, John Wiley & Sons, 2012.
  54. J.P. Park, C. Park, J. Cho, C.B. Bahn, Effects of cracking test conditions on estimation uncertainty for weibull parameters considering time-dependent censoring interval, Materials 10 (2017), https://doi.org/10.3390/ma10010003.
  55. J.P. Park, C.B. Bahn, Uncertainty evaluation of weibull estimators through Monte Carlo simulation: applications for crack initiation testing, Materials 9 (2016), https://doi.org/10.3390/ma9070521.
  56. J.P. Park, C. Park, Y.-J. Oh, J.H. Kim, C.B. Bahn, Statistical analysis of parameter estimation of a probabilistic crack initiation model for Alloy 182 weld considering right-censored data and the covariate effect, Nuclear Engineering and Technology (2018) 50, https://doi.org/10.1016/j.net.2017.09.005.
  57. J.P. Park, S. Mohanty, C.B. Bahn, S. Majumdar, K. Natesan, Weibull and bootstrap-based data-analytics framework for fatigue life prognosis of the pressurized water nuclear reactor component under harsh reactor coolant environment, Journal of Nondestructive Evaluation, Diagnostics and Prognostics of Engineering Systems 3 (2020).
  58. S.S. Rao, Engineering Optimization: Theory and Practice, John Wiley & Sons, 2019.
  59. Ian de Curieres, Corrosion Issues in Future Years: A Tso Perspective, in: 19th Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Boston, 2019.
  60. E. Chaumun, J. Crepin, C. Duhamel, C. Guerre, E. H eripr e, M. Sennour, I. de Curieres, Stress Corrosion Cracking Initiation of Alloy 82 in Hydrogenated Steam, in: Proceedings of the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Springer, 2019, pp. 175-189.
  61. J. Chakrabarty, Applied Plasticity, Springer, 2010.
  62. T. Couvant, F. Vaillant, Initiation of PWSCC of Weld Alloy 182, in: Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Springer, 2011, pp. 1141-1154.
  63. P. Scott, M. Foucault, B. Brugier, J. Hickling, A. McIlree, L. Nelson TMS, Examination of Stress Corrosion Cracks in Alloy 182 Weld Metal after Exposure to PWR Primary Water, in: T.R. Allen, P.J. King (Eds.), Proceedings of the 12th International Conference on Environmental Degradation of Materials in Nuclear Power System-Water Reactors-, The Minerals, Metals & Materials Society, 2005, pp. 497-509.
  64. F. Vaillant, J.-M. Boursier, T. Couvant, C. Amzallag, J. Champredonde, Influence of a Cyclic Loading on the Initiation and Propagation of PWSCC in Weld Metal 182, in: 12th Int. Conf. On Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Snowbird, UA, 2005, pp. 14-18.
  65. J.-D. Hong, C. Jang, T.S. Kim, PFM application for the PWSCC integrity of Nibase alloy welds-development and application of PINEP-PWSCC, Nucl. Eng. Technol. 44 (2012) e970.
  66. E.L. Kaplan, P. Meier, Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc. 53 (1958) 457-481. https://doi.org/10.1080/01621459.1958.10501452

Cited by

  1. Stress corrosion cracking initiation susceptibility of Alloy 182 with different surface treatments vol.196, 2021, https://doi.org/10.1016/j.corsci.2021.110037