• Title/Summary/Keyword: Microstrip patch antennas

Search Result 167, Processing Time 0.021 seconds

Fabrication and Frequency Agile of Microstrip Antennas Using Y-cut $LiNbo_3$, Quartz and FR-4 Substrates. (Y-cut $LiNbo_3$, Quartz, FR-4 기판을 이용한 마이크로스트립 안테나의 제작과 공진주파수 이동에 관한 연구.)

  • Lee, Ki-Se;Lee, Kyu-Il;Kang, Hyun-Il;Song, Joon-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.116-120
    • /
    • 2004
  • In this paper, we proposed a method to shift the resonant frequency by applying the electric field to microstrip patch antenna using piezoelectric substrates. We fabricated microstrip patch antenna using Y-cut LiNbO3, Quartz and FR-4 substrates. We designed and simulated the microstrip antennas by Ensemble V 7.0 of the simulation too1. We observed the resonant frequency by DC applied electric field in a microstrip patch antenna. When the electric field was 300 V/mm, the resonant frequency agile of Y-cut LiNbO3 microstrip patch antennas were 29 MHz. When the electric field was 400 V/mm, the frequency agile of X-cut, Y-cut and Z-cut quartz microstrip patch antennas were 55.2 MHz, 34.2 MHz and 28.0 MHz, respectively. However, when the electric field was 400 V/mm, the resonant frequency of FR-4 microstrip patch antenna does not changed. It was shown that the resonant frequency agile of Y-cut and Z-cut quartz microstrip patch antennas are due to piezoelectric phenomenon not to be permittivity.

  • PDF

A Study on the Design of Wideband Antenn as using U-Slot Patches (U-Slot 패치를 이용한 광대역 안테나의 설계에 관한 연구)

  • Kim Won-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.180-185
    • /
    • 2005
  • Microstrip antennas generally have a lot of advantages that are thin profile, lightweight, low cost, and conformability to a shaped surface application with integrated circuitry. In addition to military applications, they have become attractive candidates in a variety of commercial applications such as mobile satellite communications, the direct broadcast system (DBS), global positioning system (GPS), and remote sensing. Recently, many of the researches have been achieved for improving the impedance bandwidth of microstrip antennas. The basic form of the microstrip antenna, consisting of a conducting patch printed on a grounded substrate, has an impedance bandwidth of $1\~2\%$. For improvement of narrow bandwidth of microstrip patch, we were designed U-slot microstrip patch antenna in this paper. This antenna had wide bandwidth for all personal communication services (PCS) and IMT-2000. For the design of U-slot microstrip patch antenna using a finite difference time domain(FDTD) method. This numerical method could get the frequency property of U-slot patch antenna and the electromagnetic fields of slots.

The Design of a K-Band 4$\times$4 Microstrip Patch Array Antennas with High Directitvity (고지향성 구현을 갖는 K-밴드 4$\times$4 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee, Ha-Young;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.161-166
    • /
    • 2007
  • In this paper, two 4$\times$4 rectangular patch array antennas operating at 20 GHz are implemented for the satellite communication. The sixteen patch antennas and microstrip feeding line are printed on a single-layered substrate. The design goal is to achieve high directivity and gain by optimizing design parameters through permutations in element spacing. The spacing between the array elements is chosen to be 0.736$\lambda$. Numerical simulation results indicate that the HPBW(Half-Power Beam Width) of the 4$\times$4 patch array antenna is 18.78 degrees in the E-plane and 18.48 degrees in the H-plane with a gain of 17.18 dBi. Numerical simulations of a 4$\times$4 recessed patch array antenna yield a HPBW of 18.71 degrees in the E-plane and 17.82 degrees in the H-plane with a gain of 19.43 dBi.

Adaptive Adjustment of Radiation Properties for Entire Range of Axial Ratio using a Parasitic Microstrip Polarizer

  • Yoo, Sungjun;Lee, Dongeun;Byun, Gangil;Choo, Hosung
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1250-1256
    • /
    • 2017
  • This paper proposes the design of microstrip patch antennas for dual-band polarization adjustment. The antenna has a multi-layer structure for dual-band operation, and each layer contains a resonating patch with surrounding strips separated into two parts. The antenna polarization is adjusted by varying the separated positions of the strips, while fixing other design parameters. To demonstrate the feasibility, an antenna sample with right-hand circular polarization is fabricated, and its antenna characteristics are measured in a full anechoic chamber. The operating principle of polarization adjustment in the dual frequency bands is also verified by observing near electromagnetic fields and the magnetic surface current density around the antenna.

A Small Microstrip Patch Antenna (소형 마이크로스트립 패치 안테나)

  • 장순범;박동국
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.351-355
    • /
    • 2003
  • In this paper, rectangular patch antenna is miniaturized by changing the middle of patch into narrow microstrip line except the edges of the patch where the fringing field occurs. Miniaturized rate, gain, bandwidth, radiation pattern of suggested antennas were compared with general square and rectangular microstrip antennas by using simulator Ensemble. As a result, it reduces the dimension of antenna by 44 % and improves the characteristic of x-pol by 40 dB as an advantage when compare with square microstrip antenna while it reduces bandwidth.

A High-Gain Microstrip Patch Array Antenna Using a Superstrate Layer

  • Choi, Won-Kyu;Cho, Yong-Heui;Pyo, Cheol-Sik;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.25 no.5
    • /
    • pp.407-411
    • /
    • 2003
  • A dielectric superstrate layer above a microstrip patch antenna has remarkable effects on its gain and resonant characteristics. This paper experimentally investigates the effect of a superstrate layer for high gain on microstrip patch antennas. We measured the gain of antennas with and without a superstrate and found that the gain of a single patch with a superstrate was enhanced by about 4 dBi over the one without a superstrate at 12 GHz. The impedance bandwidths of a single patch with and without a superstrate for VSWR < 2 were above 11%. The designed $2{\times}8$ array antenna using a superstrate had a high gain of over 22.5 dB and a wide impedance bandwidth of over 17%.

  • PDF

Effect of a Finite Substrate on the Mutual Coupling of a Pair of Microstrip Patch Antennas Positioned along the E-plane (유한한 기판 크기가 E-평면상에 배열된 두 개의 패치안테나간의 상호결합에 미치는 영향)

  • Kim, Tae-Young;Kim, Gun-Su;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.6
    • /
    • pp.26-34
    • /
    • 2010
  • The mutual coupling of a pair of microstrip patch antennas on a finite grounded dielectric substrate is influenced by the diffracted field of surface waves from the edges of a substrate. The effective dielectric constant of a grounded dielectric substrate determines the distance between the antenna center and the edge of a substrate to obtain the minimum mutual coupling between a pair of microstrip patch antennas. The optimum substrate size with the minimum mutual coupling is easily calculated using the image method. The optimum substrate sizes using the linage method are in good agreement with the results obtained by the full wave simulation.

Design and Fabrication of Microstrip Patch Antenna for GPS (GPS용 마이크로스트립 패치 안테나 설계 및 제작)

  • 이은진;강부식;홍성욱;김홍수
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.183-186
    • /
    • 2002
  • In this paper, a microstrip Patch antenna with the T-shaped slits, which are employed to reduce the patch size. is proposed for GPS In order to analyze characteristics of the antennas are defined green function of the moment method. The microstrip Patch antenna and microstrip Patch with the T-shaped slits are fabricated. The numerical result of return loss and -10d13 bandwidth are compared with measured results.

  • PDF

The Design of $4{\times}4$ Microstrip Patch Array Antenna of K-Band for the High Gain (고이득 구현을 위한 K-밴드 $4{\times}4$ 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee Ha-Young;Braunstein Jeffrey;Kim Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.193-196
    • /
    • 2006
  • In this paper, two $4{\times}4$ rectangular patch array antennas operated at 20 GHz are implemented for the satellite communication. Two $2{\times}2$ sub-arrays are designed and used for the design of $4{\times}4$ patch array. The sixteen patch antennas and microstrip feeding line are printed on the single-layered substrate. The spacing between the array elements is chosen to be $0.736{\lambda}$. The HPBW(Half Power Beam Width) of the $4{\times}4$ microstrip patch array is 17.01 degrees in the E-plane and 17.71 degrees in the H-plane with a gain of 11.6dB in the experimental results. The HPBW of the recessed $4{\times}4$ microstrip patch array is 18.66 degrees in E-plane and 17.12 degrees in the H-plane with a gain of 12.55dB in the experimental results.

  • PDF

Design of wideband microstrip antennas using parasitic element (기생소자를 이용한 광대역 마이크로스트립 안테나의 설계)

  • 김태완;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1294-1303
    • /
    • 1996
  • In this paper, the microstrip anntenna with broad bandwidth is designed using parasitic element. In the designed cofiguration, parasitic element of the same resonating length but different width which is coupled to the nonradiating edge of a rectangular patch antenna. The driven element aloe is fed and the other part is operated as parasitic element. So the different patchs are resonating at differnt frequencies and this multiple resonance increase the bandwidth. The overall size of the antenna is not increased by adding parasitic element to a driven patch. Compared to the available wideband microstrip antennas, the designed antenna structure is bery compact. A theoretical explanation of the rectangular patch antenna coupled with prarsitic is analyzed by extending the theory of coupled microstrip lines. The theoretical and experimental results for a patch coupled with a single parasitic are presented.

  • PDF