• Title/Summary/Keyword: Micromolding method

Search Result 10, Processing Time 0.045 seconds

Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch (미세성형 기술과 패치의 선택적 제거방법을 이용한 이방성의 육각별 입자 제조)

  • Shim, Gyurak;Yeom, Su-Jin;Jeong, Seong-Geun;Kang, Kyoung-Ku;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.105-111
    • /
    • 2018
  • This study presents a novel and eco-friendly process that can precisely control the location of the patches on the patch particles. The method of manufacturing these anisotropic hexagram patch particles consists of sequential combinations of two separate methods such as a sequential micromolding technique for fabricating patch particles and a selective localization method for controlling the location of patches on the patch particles. The micromolding technique was carried out using physicochemically stable material as a micromold. In order to fabricate the highly stable patch anisotropic hexagram particles, the perfluoropolyether (PFPE) micromold was used to the process of the micromolding technique because they could prevent the problem of diffusion of hydrophobic monomers while conventional poly(dimethylsiloxane) (PDMS) micromold is limited to prevent the problem of diffusion of hydrophobic monomers. Based on combination methods of the micromolding technique and the selective localization method, the reproducibility and stability have been improved to fabricate 12 different types of anisotropic hexagram patch particles. This fabrication method shows the unique advantages in eco-friend condition, easy and fast fabrication due to less number of process, the feasibility of a mass production. We believe that these anisotropic hexagram patch particles can be widely utilized to the field of the directional self-assembly.

Fabrication of Mold-insert for Micro-lens Using Electroforming Process (Electroforming 공정을 이용한 마이크로 렌즈용 몰드 인서트의 제작)

  • 이남석;문수동;강신일
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.94-97
    • /
    • 2002
  • Micromolding methods are most suitable for mass production of plastic microlens and lens array with low cost. Among the procedures related with micromolding of microlens array, fabrication of mold insect which contains micro cavity of lens shape is the most important stage. In this study, nickel mold inserts for 45 $\mu\textrm{m}$ and 95 $\mu\textrm{m}$ diameters lens way were fabricated using electroforming process. The mother for metal mold inset was made using reflow method. A micro compression molding with polymer powders was used to test the qualities of the metal mold insets. Micro lens profile and surface roughness was measured by interferometric technique and AFM, respectively. The final molded lens replicated the mother well, and had good surface quality.

  • PDF

Micromolding Technique for Controllable Anisotropic Polymeric Particles with Convex Roof (볼록한 지붕을 갖는 이방성 고분자 입자의 곡률반경 제어를 위한 마이크로몰딩 기술)

  • Jeong, Jae-Min;Son, Jung-Woo;Choi, Chang-Hyung;Lee, Chang-Soo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.295-300
    • /
    • 2012
  • Synthesis of well-defined particle with tunable size, shape, and functionalities is strongly emphasized for various applications such as chemistry, biology, material science, chemical engineering, medicine, and biotechnology. This study presents micromolding method for the fabrication of anisotropic particles with elegant control of curvature of covex roof. For the demostration of rapid fabrication of the particles, we have applied polydimethylsiloxane (PDMS) micromold as structure guiding template and wetting fluid to control curvature of roof of the particles. Based on this approach, we can control the radius of curvature from $20{\mu}m$ to $70{\mu}m$ with different aspect ratio of mold. In addition, wetting fluids with different wetting properties can also modulate the height and radius of curvature of the particles. We envision that this methodology is promising tool for precise control of particle shape in 3-dimensional space and new synthetic route for anisotropic particles with cost effective, simple, easy, and fast procedure.

Fabrication of Fluorescent Labeled Bi-compartmental Particles via the Micromolding Method (미세 성형 방법을 이용한 형광 표지된 이중 분획 입자의 제조)

  • Shim, Gyurak;Jeong, Seong-Geun;Hong, Woogyeong;Kang, Koung-Ku;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.826-831
    • /
    • 2018
  • This study presents fabrication of bi-compartmental particles labeled by multiple fluorescence. To compartmentalize fluorescent expression at the particle, two fluorescent dyes with less overlap of the excitation and emission spectra are selected. To ensure the fluorescence stability, the fluorescent dyes contain acrylate functional groups in the molecules so that they can be cross-linked together with monomers constituting the particle. Strong fluorescent expression and compartmentalization were observed at the particle fabricated using the selected fluorescent dyes through confocal microscopy. Furthermore, long-term fluorescence stability was verified by measuring fluorescent expression and intensity for 4 weeks. We anticipate that the bi-compartmental particles labeled by multiple fluorescence can be widely used for multi-target drug delivery system, analysis of 3 dimensional Brownian motion, and investigation of 3 dimensional complex self-assembled morphologies.

Surface modification method for controlling liquid crystal alignment

  • Kim, Hak-Rin;Song, June-Yong;Bae, Kwang-Soo;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.299-302
    • /
    • 2007
  • We propose a soft-lithographic patterning method for producing a multi-domain liquid crystal (LC) alignment. The LC alignment polyimide layers are periodically patterned in the pixel boundaries by a micromolding-in-capillaries method. In our structure, the initially homeotropic LC orientations in the pixel areas are changed to axially symmetric LC domains due to the symmetric pretilt of LC molecules on the pixel boundaries.

  • PDF

Fabrication of Multi-functional Self-Assembled Monolayers by Microcontact Printing and Their Application for Electronic and Biological Devices (미세접촉인쇄기법을 이용한 다기능성 자기조립막 제작과 전자.생물소자로의 응용)

  • Choi, Dae-Geun;Yu, Hyung-Kyun;Yang, Seung-Man;Jo, Jeong-Dai;Lee, Eung-Sug
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1021-1024
    • /
    • 2003
  • In this work, we fabricated various 2D metallic and polymeric nanopatterns with the feature resolution of sub-micrometer scale by using the method of microcontact printing ($\mu$ P) based on soft lithography. Silicon masters for the micromolding were made by e-beam lithography. Composite poly(dimethylsiloxane) (PDMS) molds were composed of a thin, hard layer supported by soft PDMS layer. Finally, monodisperse metal or polymer particles could be obtained in the prepared pattern for the application of electronic devices.

  • PDF

Fabrication of sub-micron sized organic field effect transistors

  • Park, Seong-Chan;Heo, Jeong-Hwan;Kim, Gyu-Tae;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.84-84
    • /
    • 2010
  • In this study, we report on the novel lithographic patterning method to fabricate organic-semiconductor devices based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries (MIMIC) and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce the atomic layer deposition of $Al_2O_3$ film on pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated sub-micron sized pentacene FETs and measured their electrical characteristics.

  • PDF

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan;Zhu, Zanzan;Wang, Jianlong;Zhou, H. Susan
    • Smart Structures and Systems
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2013
  • Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Fabrication of Micron-sized Organic Field Effect Transistors (마이크로미터 크기의 유기 전계 효과 트랜지스터 제작)

  • Park, Sung-Chan;Huh, Jung-Hwan;Kim, Gyu-Tae;Ha, Jeong-Sook
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, we report on the novel lithographic patterning method to fabricate organic thin film field effect transistors (OTFTs) based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30 nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce $Al_2O_3$ film grown via atomic layer deposition method onto pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated micron sized pentacene FETs and measured their electrical characteristics.

3-Dimensional Coating Polymer Microneedles for Economical and Efficient Transdermal Drug Delivery (경제적이고 효과적인 경피 약물전달을 위한 3차원 구조의 코팅 고분자 마이크로니들)

  • Lee, Han-Sol;Park, Jung-Hwan
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.391-396
    • /
    • 2014
  • Polymer microneedles can be fabricated by a micromolding method, an easy and cost-effective method. However, it is not easy to achieve uniform coating with an aqueous coating solution due to hydrophobic surface of polymer microneedles. 3-Dimensional coating polymer microneedles could deliver more than twice as much dose as in-plane metal microneedles by increasing coating area and the number of microneedles per unit area. A uniform coating was not obtained by addition of coating additives in the coating solution. The satisfied coating was achieved by treatment of surface of polymer microneedle with metal deposition and UV/ozone, and UV/ozone treatment was an ultimate surface treatment method based on biological safety. Calcein coating polymer microneedles were prepared by using UV/ozone treatment and followed dip-coating, and they delivered calcein in porcine skin successfully after 15 min of insertion.