DOI QR코드

DOI QR Code

Fabrication of Fluorescent Labeled Bi-compartmental Particles via the Micromolding Method

미세 성형 방법을 이용한 형광 표지된 이중 분획 입자의 제조

  • Shim, Gyurak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Jeong, Seong-Geun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Hong, Woogyeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kang, Koung-Ku (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 심규락 (충남대학교 응용화학공학과) ;
  • 정성근 (충남대학교 응용화학공학과) ;
  • 홍우경 (충남대학교 응용화학공학과) ;
  • 강경구 (충남대학교 응용화학공학과) ;
  • 이창수 (충남대학교 응용화학공학과)
  • Received : 2018.09.14
  • Accepted : 2018.10.04
  • Published : 2018.12.01

Abstract

This study presents fabrication of bi-compartmental particles labeled by multiple fluorescence. To compartmentalize fluorescent expression at the particle, two fluorescent dyes with less overlap of the excitation and emission spectra are selected. To ensure the fluorescence stability, the fluorescent dyes contain acrylate functional groups in the molecules so that they can be cross-linked together with monomers constituting the particle. Strong fluorescent expression and compartmentalization were observed at the particle fabricated using the selected fluorescent dyes through confocal microscopy. Furthermore, long-term fluorescence stability was verified by measuring fluorescent expression and intensity for 4 weeks. We anticipate that the bi-compartmental particles labeled by multiple fluorescence can be widely used for multi-target drug delivery system, analysis of 3 dimensional Brownian motion, and investigation of 3 dimensional complex self-assembled morphologies.

본 연구는 다중 형광이 표지된 이중 분획 입자의 제조에 관한 것이다. 입자 내에서 형광 발현을 분획화하기 위하여, 형광의 여기 및 방출 스펙트럼의 중첩이 적은 두가지의 형광 염료를 선정한다. 또한, 형광 안정성을 확보하기 위하여 선정된 형광 염료는 입자를 구성하는 소재와 함께 가교될 수 있도록 분자 내에 아크릴레이트(acrylate) 작용기를 포함한다. 공초점 현미경 촬영을 통하여 선정된 형광 물질을 이용하여 제조된 입자에서 강한 형광 발현 및 형광의 분획화를 확인하였다. 더 나아가 4주 동안 형광 발현 및 세기를 측정하여 장기간의 형광 안정성을 검증하였다. 본 연구에서 제조된 다중 형광 표지된 이중 분획 입자는 다중 표적형 약물 전달 체계, 3차원 브라운 운동의 해석 연구, 3차원의 복잡한 자기 조립체 형상의 규명 연구 등에 널리 활용될 수 있으리라 기대한다.

Keywords

HHGHHL_2018_v56n6_826_f0001.png 이미지

Fig. 1. Schematics for fabricating of fluorescent labeled bi-compartmental particles via the micromolding method.

HHGHHL_2018_v56n6_826_f0002.png 이미지

Fig. 3. (a) The confocal microscope image of the hydrophilic part labeled by nile blue acrylamide (NBAM) at 638 nm laser. (b) The confocal microscope image of the hydrophobic part labeled by fluorescein o-acrylate (FA) at 488 nm laser. (c) The merged images of (a) and (b). (d) Measurement of fluorescence intensity of bi-compartmental particles along the white dotted line of the inserted image. Scale bars are 50 μm.

HHGHHL_2018_v56n6_826_f0003.png 이미지

Fig. 5. Long-term fluorescence stability of bi-compartmental particles containing fluorescein o-acrylate (FA) and nile blue acrylamide (NBAM).

HHGHHL_2018_v56n6_826_f0004.png 이미지

Fig. 2. (a) Chemical structures of fluorescent dyes. (b) Excitation and emission spectra of fluorescein o-acrylate (FA), nile blue acrylamide (NBAM).

HHGHHL_2018_v56n6_826_f0005.png 이미지

Fig. 4.Water contact angle measurements of the hydrophilic film without nile blue acrylamide (NBAM), the hydrophilic film with nile blue acrylamide (NBAM), the hydrophobic film without fluorescein o-acrylate (FA), and the hydrophobic film with fluorescein o-acrylate (FA).

References

  1. Chestnut, M. H., "Confocal Microscopy of Colloids," Curr. Opin. Colloid Interface Sci., 2, 158-161(1997). https://doi.org/10.1016/S1359-0294(97)80020-9
  2. Murray, C. A. and Grier, D. G., "Video Microscopy of Monodisperse Colloidal Systems," Annu. Rev. Phys. Chem., 47, 421-462(1996). https://doi.org/10.1146/annurev.physchem.47.1.421
  3. Dinsmore, A. D., Weeks, E. R., Prasad, V., Levitt, A. C. and Weitz, D. A., "Three-dimensional Confocal Microscopy of Colloids," Appl. Opt., 40(24), 4152-4159(2001). https://doi.org/10.1364/AO.40.004152
  4. Blaaderen, A. V., Peetermans, J., Maret, G. and Dhont, J. K. G., "Long-time Self-Diffusion of Spherical Colloidal Particles Measured with Fluorescence Recovery after Photobleaching," J. Chem. Phys., 96(6), 4591-4603(1992). https://doi.org/10.1063/1.462795
  5. Moschakis, T., Murray, B. S. and Dickinson, E., "Particle Tracking Using Confocal Microscopy to Probe the Microrheology in a Phase-separating Emulsion Containing Nonadsorbing Polysaccharide," Langmuir, 22, 4710-4719(2006). https://doi.org/10.1021/la0533258
  6. Ruthardt, N., Lamb, D. C. and Bräuchle, C., "Single-particle Tracking as a Quantitative Microscopy-based Approach to Unravel Cell Entry Mechanisms of Viruses and Pharmaceutical Nanoparticles," Mol. Ther., 19(7), 1199-1211(2011). https://doi.org/10.1038/mt.2011.102
  7. Kim, J., Choi, C. H., Yeom, S. J., Eom, N., Kang, K. K. and Lee, C. S., "Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity," Langmuir, 33, 7503-7511(2017). https://doi.org/10.1021/acs.langmuir.7b01252
  8. Mohraz, A. and Solomon, M. J., "Direct Visualization of Colloidal Rod Assembly by Confocal Microscopy," Langmuir, 21, 5298-5306(2005). https://doi.org/10.1021/la046908a
  9. McGorty, R., Fung, J., Kaz, D. and Manoharan, V. N., "Colloidal Self-assembly at an Interface," Mater. Today, 13, 34-42(2010).
  10. Oh, S., Kang, W. K., Kang, J. W., Kim, K. S. and Lee, H., "Conversion of CdTe Nanoparticles into Nanoribbons via Self-Assembly," Korean Chem. Eng. Res., 50(6), 1082-1085(2012). https://doi.org/10.9713/kcer.2012.50.6.1082
  11. Costanzo, M., Carton, F., Marengo, A., Berlier, G., Stella, B., Arpicco, S. and Malatesta, M., "Fluorescence and Electron Microscopy to Visualize the Intracellular Fate of Nanoparticles for Drug Delivery," Eur. J. Histochem., 60(2), 107-115(2016).
  12. Zhang, L. W. and Monteiro-Riviere, N. A., "Use of Confocal Microscopy for Nanoparticle Drug Delivery through Skin," J. Biomed. Opt., 18(6), 061214-1-5(2013). https://doi.org/10.1117/1.JBO.18.6.061214
  13. Jeon, W., Kim, G. Y., Kim, G. H. and Ha, C. S., "Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers," Korean Chem. Eng. Res., 48(2), 178-184(2010).
  14. Lee, Y. C. and Kang, I. J., "Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs," Korean Chem. Eng. Res., 54(2), 200-205(2016). https://doi.org/10.9713/KCER.2016.54.2.200
  15. Hwang, J., Lee, K., Gilad, A. A. and Choi, J., "Synthesis of Beta-glucan Nanoparticles for the Delivery of Single Strand DNA," Biotechnol. Bioprocess Eng., 23, 144-149(2018). https://doi.org/10.1007/s12257-018-0003-4
  16. Reenan, A. V., Jong, A. M. D., Toonder, J. M. J. D. and Prins, M. W. J., "Integrated Lab-on-chip Biosensing Systems Based on Magnetic Particle Actuation - a Comprehensive Review," Lab Chip, 14, 1966-1986(2014). https://doi.org/10.1039/C3LC51454D
  17. Bally, M., Graule, M., Parra, F., Larson, G. and Hook, F., "A Virus Biosensor with Single Virus-particle Sensitivity Based on Fluorescent Vesicle Labels and Equilibrium Fluctuation Analysis," Bioinerphases, 8(1), 1-9(2013). https://doi.org/10.1186/1559-4106-8-1
  18. Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C. and Jana, N. R., "Carbon Nanoparticle-based Fluorescent Bioimaging Probes," Sci. Rep., 3(1473), 1-7(2013).
  19. Zrazhevskiy, P., Sena, M. and Gao, X., "Designing Multifunctional Quantum Dots for Bioimaging, Detection, and Drug Delivery," Chem. Soc. Rev., 39(11), 4326-4354(2010). https://doi.org/10.1039/b915139g
  20. Chaudhary, V. and Bhowmick, A. K., "Green Synthesis of Fluorescent Carbon Nanoparticles from Lychee (Litchi chinensis) Plant," Korean J. Chem. Eng., 32(8), 1707-1711(2015). https://doi.org/10.1007/s11814-014-0381-z
  21. Lee, E. J., "Recent Advances in Protein-based Nanoparticles," Korean J. Chem. Eng., 35(9), 1765-1778(2018). https://doi.org/10.1007/s11814-018-0102-0
  22. Kim, Y. M., Kim, J. H., Park, S. C., Park, Y. H. and Kang, M. K., "Characteristic as a Gene Delivery System of Water Soluble Chitosan Conjugated with Cationic Peptide," KSBB J., 31(4), 300-311(2016). https://doi.org/10.7841/ksbbj.2016.31.4.300
  23. Choi, E. S., Kang, Y. Y. and Mok, H., "Evaluation of the Enhanced Antioxidant Activity of Curcumin within Exosomes by Fluorescence Monitoring, " Biotechnol. Bioprocess Eng., 23, 150-157(2018). https://doi.org/10.1007/s12257-018-0058-2
  24. Lee, J. S., Go, N. K., Lee, S. Y. and Hur, W., "Uptake of Fibroin Microspheres by 3T3 Cells," KSBB J., 29(5), 328-335(2014). https://doi.org/10.7841/ksbbj.2014.29.5.328
  25. Yi, Y., Sanchez, L., Gao, Y. and Yu, Y., "Janus Particles for Biological Imaging and Sensing," Analyst, 141(12), 3526-3539(2016). https://doi.org/10.1039/c6an00325g
  26. Choi, C. H., Kang, S. M., Jin, S. H., Yi, H. and Lee, C. S., "Controlled Fabrication of Multicompartmental Polymeric Microparticles by Sequential Micromolding via Surface-Tension-Induced Droplet Formation," Langmuir, 31(4), 1328-1335(2015). https://doi.org/10.1021/la504404y
  27. Hwang, S. and Lahann, J., "Differentially Degradable Janus Particles for Controlled Release Applications, " Macromol. Rapid Commun., 33, 1178-1183(2012). https://doi.org/10.1002/marc.201200054
  28. Sanchez, L., Patton, P., Anthony, S. M., Yi, Y. and Yu, Y., "Tracking Single-particle Rotation during Macrophage Uptake," Soft Matter, 11, 5346-5352(2015). https://doi.org/10.1039/C5SM00893J
  29. Hong, L., Cacciuto, A., Luijten, E., and Granick, S., "Clusters of Charged Janus Spheres," Nano Lett., 6(11), 2510-2514(2006). https://doi.org/10.1021/nl061857i
  30. Kang, S. M., Choi, C. H., Kim, J., Yeom, S. J., Lee, D., Park, B. J. and Lee, C. S., "Capillarity-induced Directed Self-assembly of Patchy Hexagram Particles at the Air-water Interface," Soft Matter, 12, 5847-5853(2016). https://doi.org/10.1039/C6SM00270F
  31. Tang, J. L., Schoenwald, K., Potter, D., White, D. and Sulchek, T., "Bifunctional Janus Microparticles with Spatially Segregated Proteins," Langmuir, 28, 10033-10039(2012). https://doi.org/10.1021/la3010079
  32. Nie, Z., Li, W., Seo, M., Xu, S. and Kumacheva, E., "Janus and Ternary Particles Generated by Microfluidic Synthesis: Design, Synthesis, and Self-assembly," J. Am. Chem. Soc., 128, 9408-9412(2006). https://doi.org/10.1021/ja060882n
  33. Seiffert, S. and Weitz, D. A., "Microfluidic Fabrication of Smart Microgels from Macromolecular Precursors," Polymer, 51, 5883-5889(2010). https://doi.org/10.1016/j.polymer.2010.10.034
  34. Choi, C. H., Lee, J., Yoon, K., Tripathi, A., Stone, H. A., Weitz, D. A. and Lee, C. S., "Surface-tension-induced Synthesis of Complex Particles Using Confined Polymeric Fluids," Angew. Chem., Int. Ed., 49, 7748-7752(2010). https://doi.org/10.1002/anie.201002764
  35. Yeom, S. J., Kang, S. M., Kim, J., Nam, J. O., Eom, N., Lee, S. and Lee, C. S., "Fabrication of Multicompartment Particles via Sequential Micromolding Method," Polym. Korea, 40(3), 457-463(2016). https://doi.org/10.7317/pk.2016.40.3.457
  36. Love, J. C., Wolfe, D. B., Jacobs, H. O. and Whitesides, G. M., "Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography," Langmuir, 17, 6005-6012(2001). https://doi.org/10.1021/la010655t
  37. Hwang, S., Choi, C. H. and Lee, C. S., "Regioselective Surface Modification of PDMS Microfluidic Device for the Generation of Monodisperse Double Emulsions," Macromol. Res., 20(4), 422-428(2012). https://doi.org/10.1007/s13233-012-0048-8
  38. Shim, G., Yeom, S. J., Jeong, S. G., Kang, K. K. and Lee, C. S., "Fabrication of Anisotropic Hexagram Particles by using the Micromolding Technique and Selective Localization of Patch," Clean Technol, 24(2), 105-111(2018). https://doi.org/10.7464/KSCT.2018.24.2.105
  39. Doytcheva, M., Dotcheva, D., Stamenova, R. and Tsvetanov, C., "UV-Initiated Crosslinking of Poly(ethylene oxide) with Pentaerythritol Triacrylate in Solid State," Macromol. Mater. Eng., 286, 30-33(2001). https://doi.org/10.1002/1439-2054(20010101)286:1<30::AID-MAME30>3.0.CO;2-6
  40. Azzam, W. R., "Reduction of the Shrinkage-Swelling Potential with Polymer Nanocomposite Stabilization", J. Appl. Polym. Sci., 123, 299-306(2012). https://doi.org/10.1002/app.33642
  41. https://www.thermofisher.com/kr/ko/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html.