DOI QR코드

DOI QR Code

In situ analysis of capturing dynamics of magnetic nanoparticles in a microfluidic system

  • Munir, Ahsan (Department of Chemical Engineering, Worcester Polytechnic Institute) ;
  • Zhu, Zanzan (Department of Chemical Engineering, Worcester Polytechnic Institute) ;
  • Wang, Jianlong (College of Food Science & Engineering, Northwest A&F University) ;
  • Zhou, H. Susan (Department of Chemical Engineering, Worcester Polytechnic Institute)
  • Received : 2012.06.11
  • Accepted : 2012.11.30
  • Published : 2013.07.25

Abstract

Magnetic nanoparticle based bioseparation in microfluidics is a multiphysics phenomenon that involves interplay of various parameters. The ability to understand the dynamics of these parameters is a prerequisite for designing and developing more efficient magnetic cell/bio-particle separation systems. Therefore, in this work proof-of-concept experiments are combined with advanced numerical simulation to design and optimize the capturing process of magnetic nanoparticles responsible for efficient microfluidic bioseparation. A low cost generic microfluidic platform was developed using a novel micromolding method that can be done without a clean room techniques and at much lower cost and time. Parametric analysis using both experiments and theoretical predictions were performed. It was found that flow rate and magnetic field strength greatly influence the transport of magnetic nanoparticles in the microchannel and control the capturing efficiency. The results from mathematical model agree very well with experiments. The model further demonstrated that a 12% increase in capturing efficiency can be achieved by introducing of iron-grooved bar in the microfluidic setup that resulted in increase in magnetic field gradient. The numerical simulations were helpful in testing and optimizing key design parameters. Overall, this work demonstrated that a simple low cost experimental proof-of-concept setup can be synchronized with advanced numerical simulation not only to enhance the functional performance of magneto-fluidic capturing systems but also to efficiently design and develop microfluidic bioseparation systems for biomedical applications.

Keywords

References

  1. Ahn, C.H., Allen, M.G., Trimmer, W., Jun, Y.N. and Erramilli, S. (1996), "A fully integrated micromachined magnetic particle separator", J. Microelectromech. S., 5, 151-158. https://doi.org/10.1109/84.536621
  2. Berry, C.C. and Curtis, A.S.G. (2003), "Functionalisation of magnetic nanoparticles for applications in biomedicine", J. Phys. D Appl. Phys., 36, R198-R206. https://doi.org/10.1088/0022-3727/36/13/203
  3. Brauer, J.R. (2007), "Finite-element computation of magnetic force densities on permeable particles in magnetic separators", IEEE T. Magn., 43, 3483-3487. https://doi.org/10.1109/TMAG.2007.900039
  4. Bu, M.Q., Christensen, T.B., Smistrup, K., Wolff, A. and Hansen, M.F. (2008), "Characterization of a microfluidic magnetic bead separator for high-throughput applications", Sensor. Actuat. A-Phys., 145-146, 430-436. https://doi.org/10.1016/j.sna.2007.12.014
  5. Choi, J.W., Oh, K.W., Thomas, J.H., Heineman, W.R., Halsall, H.B., Nevin, J.H., Helmicki, A.J., Hendersona, H.T. and Ahna, C.H. (2002), "An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities", Lab Chip., 2, 27-30. https://doi.org/10.1039/b107540n
  6. Clime, L., Boris, L.D. and Teodor, V. (2007), "Dynamics of superparamagnetic and ferromagnetic nano-objects in continuous-flow microfluidic devices", IEEE T. Magn., 2929-2931.
  7. Deng, T., Prentiss, M. and Whitesides, G.M. (2002), "Fabrication of magnetic microfiltration systems using soft lithography", Appl. Phys. Lett., 80(3), 461-463. https://doi.org/10.1063/1.1436282
  8. Furlani, E.P. (2001), Permanent magnet and electromechanical devices : materials, analysis and applications, New York: Academic Press Inc.
  9. Furlani, E. P. (2006), "Analysis of particle transport in a magnetophoretic microsystem", J. Appl. Phys., 99.
  10. Furlani, E.P. and Ng, K.C. (2006), "Analytical model of magnetic nanoparticle transport and capture in the microvasculature", Phys. Rev. E., 73.
  11. Furlani, E.P. (2010), "Magnetic biotransport: analysis and applications", Material, 3, 2412-2446. https://doi.org/10.3390/ma3042412
  12. Gerber, R., Takayasu, M. and Friedlander, F.J. (1983), "Generalization of HGMS theory: the capture of ultrafine particles", IEEE T. Magn. 319, 2115-2117.
  13. Gijs, M.A.M. (2004), "Magnetic bead handling on-chip: new opportunities for analytical applications", Microfluid. Nanofluid., 1, 22-40.
  14. Hahn, Y.K., Jin, Z.W., Kang, J.H., Oh, E.K., Han, M.K., Kim, H.S., Jang, J.T., Lee, J.H., Cheon, J.W., Kim, S.H. Park, H.S. and Park, J.K. (2007), "Magnetophoretic immunoassay of allergen-specific IgE in an enhanced magnetic field gradient", Anal. Chem., 79(6), 2214- 2220. https://doi.org/10.1021/ac061522l
  15. Hayes, M.A., Polson, M.A., Phayre, A.N. and Garcia, A.A. (2001), "Flow-based microimmunoassay", Anal. Chem., 73(24), 5896-5902. https://doi.org/10.1021/ac0104680
  16. Kim, M.C., Kim, D.K., Lee, S.H., Amin, M.S., Park, I.H., Kim, C.J. Zahn, M. (2006), "Dynamic characteristics of superparamagnetic iron oxide nanoparticles in a viscous fluid under an external magnetic field", IEEE T. Magn., 42(4), 979-982. https://doi.org/10.1109/TMAG.2006.872032
  17. Lee, C.S., Lee, H. and Westervelt, R.M. (2001), "Microelectromagnets for the control of magnetic nanoparticles", Appl. Phys. Lett., 79 (20), 3308. https://doi.org/10.1063/1.1419049
  18. Lehmann, U., Vandevyver, C., Parashar, V.K. and Gijs, M.A.M. (2006), "Droplet-based DNA purification in a magnetic lab-on-a-chip", Angewandte Chemie-Int. Ed., 45(19), 3062-3067. https://doi.org/10.1002/anie.200503624
  19. Manz, A., Graber, N. and Widmer, H.M. (1990), "Miniaturized total chemical-analysis systems - a novel concept for chemical sensing", Sensor. Actuat. B Chem., 1(1-6), 244-248. https://doi.org/10.1016/0925-4005(90)80209-I
  20. McCloskey, K.E., Chalmers, J.J. and Zborowski, M. (2000), "Magnetophoretic mobilities correlate to antibody binding capacities", Cytometry, 40, 307-315. https://doi.org/10.1002/1097-0320(20000801)40:4<307::AID-CYTO6>3.0.CO;2-H
  21. Pamme, N. (2006), "Magnetism and microfluidics", Lab Chip., 6, 24-38. https://doi.org/10.1039/b513005k
  22. Pankhurst, Q.A., Connolly, J., Jones, S.K. and Dobson, J. (2003), "Applications of magnetic nanoparticles in biomedicine", J. Phys. D Appl. Phys., 36(13), R167-R181. https://doi.org/10.1088/0022-3727/36/13/201
  23. Rida, A. and Gijs, M.A.M. (2004), "Dynamics of magnetically retained supraparticle structures in a liquid flow", Appl. Phys. Lett., 85, 4986.
  24. Rosensweig, R. (1997), Ferrohydrodynamics. New York: Dover Publication Inc.
  25. Shih, P.H., Shiu, J.Y., Lin, P.C., Lin, C.C., Veres, T. and Chen, P. (2008), "On chip sorting of bacterial cells using sugar- encapsulated magnetic nanoparticles", J. Appl. Phys., 103(7).
  26. Smistrup, K., Kjeldsen, B.G., Reimers, J.L., Dufva, M., Petersena, J. and Hansena, M.F. (2005), "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator", Lab Chip., 5, 1315. https://doi.org/10.1039/b510995g
  27. Smistrup, K., Torsten, L.O., Hansen, M.F. and Tang, P.T. (2006), "Microfluidic magnetic separator using an array of soft magnetic elements", J. Appl. Phys., 99(8), 08P102 - 08P102-3. https://doi.org/10.1063/1.2159418
  28. Sullivan, S.P., Akpa, B.S., Matthews, S.M., Fisher, A.C., Gladden, L.F. and Johns, M.L. (2007), "Simulation of miscible diffusive mixing in microchannels", Sensor. Actuat. B Chem., 123, 1142-1152. https://doi.org/10.1016/j.snb.2006.10.025
  29. Suzuki, H. , Ho, C.M. and Kasagi, N. (2004), "A chaotic mixer for magnetic bead-based micro cell sorter", J. Microelectromech. S., 13 (5), 779-790. https://doi.org/10.1109/JMEMS.2004.835775
  30. Yellen, B.B. and Friedman, G. (2004), "Programmable assembly of colloidal particles using magnetic micro-well templates", Langmuir, 20, 2553. https://doi.org/10.1021/la0352016
  31. Xia, N., Hunt, T.P., Mayers, B.T., Alsberg, E.,Whitesides, G.M., Westervelt, R.M., Ingber, D.E. (2006), "Combined microfluidic- icromagnetic separation of living cells in continuous flow", Biomed. Microdevices, 8(4), 299-308.. https://doi.org/10.1007/s10544-006-0033-0

Cited by

  1. Controlled splitting and focusing of a stream of nanoparticles in a converging–diverging microchannel vol.14, pp.19, 2014, https://doi.org/10.1039/C4LC00542B
  2. Development of microfluidic concentrator using ion concentration polarization mechanism to assist trapping magnetic nanoparticle-bound miRNA to detect with Raman tags vol.14, pp.1, 2013, https://doi.org/10.1063/1.5126293