• Title/Summary/Keyword: Microbubble water

Search Result 56, Processing Time 0.028 seconds

Multiphase CFD Analysis of Microbubble Generator using Swirl Flow (선회유동을 이용한 마이크로버블 발생기의 다상유동 전산유체역학 해석)

  • Yun, S.I.;Kim, H.S.;Kim, J.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.1
    • /
    • pp.27-32
    • /
    • 2022
  • Microbubble technology has been widely applied in various industrial fields. Recently, research on many types of microbubble application technology has been conducted experimentally, but there is a limit in deriving the optimal design and operating conditions. Therefore, if the computational fluid dynamics (CFD) analysis of multiphase flow is used to supplement these experimental studies, it is expected that the time and cost required for prototype production and evaluation tests will be minimized and optimal results will be derived. However, few studies have been conducted on multiphase flow CFD analysis to interpret fluid flow in microbubble generators using swirl flow. In this study, CFD simulation of multiphase flow was performed to analyze the air-water mixing process and fluid flow characteristics in a microbubble generator with a dual-chamber structure. Based on the simulation results, it was confirmed that a negative pressure was formed on the central axis of rotation due to the strong swirling flow. And it could be seen that the air inside the suction tube was introduced into the inner chamber of the microbubble generator. In addition, as the high-speed mixed fluid collided with external water sucked by the negative pressure near the outlet, a large amount of microbubbles was ejected due to the shear force between the two flows flowing in opposite directions.

Effect of Hydraulic Pressure on Bubble Dissolution Rate of Ejector Type Microbubble Generator (수압이 자흡식 마이크로버블 발생장치의 산소 용해율에 미치는 영향)

  • Kim, Hyun-Sik;Lim, Ji-Young;Park, Soo-Young;Kim, Jin-Han
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • This study was performed to estimate bubble dissolution rate by change of hydraulic pressure according to increase of water depth. Experimental results showed that airflow rate was decreased by increase of hydraulic pressure. Because the force which acts on outlet of nozzle was increased by increase of hydraulic pressure. Mass-transfer coefficient decreased with decreasing airflow rate and increasing effective volume due to increase of hydraulic pressure as water depth increased. On the contrary, as the water depth increased, the bubble dissolution rate was increased because longer residence time of microbubble which was generated by ejector type microbubble generator. However it was thought that if water depth for capacity of ejector type microbubble generator is excessively increasing, bubble dissolution rate would be reduced due to low airflow rate and mass-transfer coefficient. Therefore, it is importance to consider the water depth when operating ejector type microbubble generator.

Evaluation of the Utilization of Carbon Dioxide Microbubble Mixing Water for Mineral Carbonation of Cement Materials (시멘트 재료의 광물탄산화를 위한 이산화탄소 마이크로버블 배합수 활용성 평가)

  • Nam, Min-Seok;Park, Dong-Cheon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.205-206
    • /
    • 2023
  • In this study, the characteristics of cement were analyzed using carbon dioxide microbubble water as a mixed water for mineral carbonation of cement materials. Carbon dioxide reacts with the calcium compound of cement to produce calcium carbonate and affects the initial strength improvement. Therefore, in this study, temperature, air content, thermal analysis, and compressive strength tests were conducted to confirm the reaction between cement materials and carbon dioxide. As a result of the measurement, the reaction between cement and carbon dioxide was confirmed in a specimen using carbon dioxide microbubble water as a mixed water, which affected the initial strength improvement.

  • PDF

Application of Ozone Microbubbles in the Field of Water and Wastewater Treatment (용수 및 폐수 처리를 위한 오존 마이크로버블 적용)

  • Nam, Gwiwoong;Jung, Jinho
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.4
    • /
    • pp.256-262
    • /
    • 2016
  • Rapid industrialization and a significant population growth has led to an increased use of chemicals, which has limited the biological processes that account for most of the existing water and wastewater treatment methods. Ozone microbubble technology, which is one of advanced oxidation processes, has recently attracted attention as a method to solve these issues. In this paper, we reviewed both the physical and the chemical characteristics of microbubbles, and evaluated microbubble-based ozone oxidation processes focusing on the removal of various toxic contaminants. In addition, we discussed the potential of an ozone microbubble process as water and wastewater treatment processes by combining it with other treatment technologies.

A Study on the Static mixer and Microbubble of the Sidestream Ozone Contact System to Improve Water Treatment Efficiency (사이드스트림 오존 접촉조에서 수처리 효율 향상을 위한 정적혼합기와 미세기포에 관한 연구)

  • Kim, Jin-Hoon;Park, Jong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.763-768
    • /
    • 2009
  • Ozone is a strong oxidant and a powerful disinfectant. In general, it has been used in drinking water treatment during last 100years. Ozone dissolution features are defined by the two categories of ozone contactors, bubble-diffuser and sidestream ozone contactor. Currently, sidestream-injection systems are gaining in popularity but operating cost might be slightly higher. Sidestream ozone system dissolve ozone into a sidestream flow via an injection setup or in the main process flow stream in some sidestream arrangements. The sidestream flow is subsequently mixed with the main process flow stream, which is directed to a reation tank or pipeline for oxidation and disinfection reactions. The purpose of this study is to suggest optimal operating pressure, to figure out the static-mixer effect and to understand the microbubble characteristics of ozone to improve dissolution efficiency.

The design of an ejector type microbubble generator for aeration tanks

  • Lim, Ji-Young;Kim, Hyun-Sik;Park, Soo-Young;Kim, Jin-Han
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.307-311
    • /
    • 2019
  • The ejector type microbubble generator, which is the method to supply air to water by using cavitation in the nozzle, does not require any air supplier so it is an effective and economical. Also, the distribution of the size of bubbles is diverse. Especially, the size of bubbles is smaller than the bubbles from a conventional air diffuser and bigger than the bubbles from a pressurized dissolution type microbubble generator so it could be applied to the aeration tank for wastewater treatment. However, the performance of the ejector type microbubble generator was affected by hydraulic pressure and MLSS(Mixed Liquor Suspended Solid) concentration so many factors should be considered to apply the generator to aeration tank. Therefore, this study was performed to verify effects of hydraulic pressure and MLSS concentration on oxygen transfer of the ejector type microbubble generator. In the tests, the quantity of sucked air in the nozzle, dissolved oxygen(DO) concentration, oxygen uptake rate(OUR), oxygen transfer coefficient were measured and calculated by using experimental results. In case of the MLSS, the experiments were performed in the condition of MLSS concentration of 0, 2,000, 4,000, 8,000 mg/L. The hydraulic pressure was considered up to $2.0mH_2O$. In the results of experiments, oxygen transfer coefficient was decreased with the increase of MLSS concentration and hydraulic pressure due to the increased viscosity and density of wastewater and decreased air flow rate. Also, by using statistical analysis, when the ejector type microbubble generator was used to supply air to wasterwater, the model equation of DO concentration was suggested to predict DO concentration in wastewater.

Experimental Study of Friction Drag Reduction in Turbulent Flow with Microbubble Injection (미소기포 주입에 의한 마찰저항 감소에 대한 연구)

  • 김덕수;김형태;김우전
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.3
    • /
    • pp.1-8
    • /
    • 2003
  • For the experiment of the friction drag reduction by microbubble injection, a drag reduction water tunnel was specifically designed and made. Experimental apparatus and procedures were devised and developed for measuring the change of wall friction drag with microbubble injection. For fully-developed channel flows. the change of friction drag with important parameters of microbubble injection is investigated and the experimental data and results obtained are presented. The amount of friction drag reduction up to 25% is observed in the present study.

Changes in Quality of 'Mipung' Chestnut during Storage by Pre-treatment Methods after Harvest (수확 후 전처리 방법에 따른 '미풍' 밤의 저장 중 품질 변화)

  • Oh, Sung-Il;Park, Yunmi;Kim, Mahn-Jo
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.4
    • /
    • pp.558-563
    • /
    • 2015
  • The effects of pre-treatment methods (water cooling, water cooling+ozone, precooling+microbubble, water cooling+ozone+microbubble) after harvest on the quality of 'Mipung' chestnut were studied. Changes in quality of chestnut were greater precooling treatments effect than washing treatments. But, decaying rate and total microorganism were significantly differences among treatments. The decaying rate after 12 weeks storage was highest at 20.0% in non-treatments and lowest at 3.3% in water cooling+ozone and water cooling+ozone+microbubble treatments. The total microorganism immediately after washing treatments was in the order non-treatments (4.4 log CFU/g) > water cooling treatments (4.0 log CFU/g) > water cooling+ozone+microbubble treatments (3.5 log CFU/g) > water cooling+ozone treatments (3.4 log CFU/g) > water cooling+microbubble treatments (3.3 log CFU/g), and after 12 weeks storage was increased within 4.7 to 5.9 log CFU/g. Thus, the washing treatments, especially ozone treatments, extended the shelf-life of the 'Mipung' chestnut by inhibiting the decaying.

A Study on the Collision Nozzle for Generating Microbubble by Self-Suction Method (자흡방식에 의해 마이크로버블을 발생시키는 충돌 노즐에 대한 연구)

  • Woo-Jin Kang;Sang-Hee Park;Seong-Hun Yu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1047-1053
    • /
    • 2023
  • An experimental study was performed on the collision nozzle system that generates microbubble by air self-suction using a venturi nozzle. This study experimentally investigates the pressure of a pump and a dissolution tank, water flow rate, air self-suction amount and microbubble generation amount. The experimental conditions were varied by changing the diameter of the collision nozzle (de=4,5,6,7,8mm), the pumping power(0.5hp, 1.0hp) and the capacity of the dissolution tank(4.4L, 8/8L). The pressure change of the pump according to the outlet diameter of the collision nozzle showed that the 1.0hp pump power operated more stably than the 0.5hp pump. The pressure change in the dissolution tank was shown to decrease rapidly as the outlet diameter of the nozzle increased. The flow rate of recirculating water was shown to increase as the nozzle diameter increased. Additionally, it was shown that the pump capacity of 1.0hp increased the flow rate more than that of 0.5hp. The self-suction air flow rate was shown to occur above de=6mm, and the air flow rate increased as the nozzle diameter increased. Also, as the pump capacity increased, the self-suction amount of air increased. It was shown that the amount of microbubble less than 50mm generated was maximum when the nozzle diameter was 6mm, the pump power was 1.0hp, and the dissolution tank capacity was 8.8L.

Study on Phosphorus Removal in the Secondary Effluent by Flotation Using Microbubble Liquid Film System (미세기포 액막화 부상법을 이용한 하수 2차 처리수의 인 제거에 관한 연구)

  • Lee, Shun-Hwa;Kang, Hyun-Woo;Lee, Se-Han;Kwon, Jin-Ha;Jung, Kye-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.42-48
    • /
    • 2012
  • In this study, experiment on phosphorus removal was performed by using microbubble liquid film flotation tank with microbubble module. After dissolving gas and liquid in dissolving tank, microbubble liquid film system created microbubbles in equal size under fixed low pressure. After being passed through $A_2O$ and m-$O_3$ process, secondary treatment wastewater was used as influent in phosphorus removal process. When the T-P concentration of influent was 2.89 mg/L, alum(8%, 30 mg/L) was injected into a microbubble flotation tank, the treatment resulted 94% of T-P removal rate. Remaining T-P concentration was less than 0.2 mg/L, which is in accord with the effluent quality standard. Seasonal variations in water temperature showed no differences in T-P removal property. When the inflow concentration of SS was 1.0 mg/L or more, it served as coagulation nuclei in the coagulation process. In that condition, average T-P removal rate was higher than 97%. When 50% of floated scum was returned, coagulator Al included in scum assisted the injected coagulator and maximized the coagulation efficiency of pollutant. In such treatment, the T-P concentration was measured as 0.18 mg/L and satisfied the outflow water quality standard, which is 0.2 mg/L or less.