References
- Agarwal, A., Ng, W.J. and Liu, Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84(9): 1175-1180. https://doi.org/10.1016/j.chemosphere.2011.05.054
- Ali, U., Syed, J.H., Malik, R.N., Katsoyiannis, A., Li, J., Zhang, G. and Jones, K.C. 2014. Organochlorine pesticides (OCPs) in South Asian region: a review. Science of the Total Environment 476: 705-717.
-
Arslan, I. and Balcioglu, I.A. 2001. Advanced oxidation of raw and biotreated textile industry wastewater with
$O_3$ ,$H_2O_2/UV-C$ and their sequential application. Journal of Chemical Technology and Biotechnology 76(1): 53-60. https://doi.org/10.1002/1097-4660(200101)76:1<53::AID-JCTB346>3.0.CO;2-T - Camel, V. and Bermond, A. 1998. The use of ozone and associated oxidation processes in drinking water treatment. Water Research 32(11): 3208-3222. https://doi.org/10.1016/S0043-1354(98)00130-4
- Chu, L.B., Xing, X.H., Yu, A.F., Zhou, Y.N., Sun, X.L. and Jurcik, B. 2007. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere 68(10): 18541860. https://doi.org/10.1016/j.chemosphere.2007.03.014
- Chu, L.B., Xing, X.H., Yu, A.F., Sun, X.L. and Jurcik, B. 2008. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Safety and Environmental Protection 86(5): 389-393. https://doi.org/10.1016/j.psep.2008.02.005
- Corona-Vasquez, B., Samuelson, A., Rennecker, J.L. and Marinas, B.J. 2002. Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Research 36(16): 4053-4063. https://doi.org/10.1016/S0043-1354(02)00092-1
- Facile, N., Barbeau, B., Prevost, M. and Koudjonou, B. 2000. Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone. Water Research 34(12): 3238-3246. https://doi.org/10.1016/S0043-1354(00)00086-5
- Ghosh, P. 2009. Colloid and Interface Science. PHI Learning Private. Ltd, New Delhi, India.
- Gracia, R., Aragues, J. L. and Ovelleiro, J.L. 1996. Study of the catalytic ozonation of humic substances in water and their ozonation byproducts. Ozone: Science & Engineering 18(3): 195-208. https://doi.org/10.1080/01919519608547326
- Ikeura, H., Kobayashi, F. and Tamaki, M. 2011. Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. Journal of Food Engineering 103(3): 345-349. https://doi.org/10.1016/j.jfoodeng.2010.11.002
- Jabesa, A. and Ghosh, P. 2016a. Removal of dimethyl phthalate from water by ozone microbubbles. Environmental Technology 27: 1-11.
- Jabesa, A. and Ghosh, P. 2016b. Removal of diethyl phthalate from water by ozone microbubbles in a pilot plant. Journal of Environmental Management 180: 476-484. https://doi.org/10.1016/j.jenvman.2016.05.072
- Kerfoot, W.B. and McGrath, A. 2001. Microbubble oxidation smokes MTBE and BTEX. Contaminated Soil Sediment and Water Spring (Special Issue): 77-78.
- Kerfoot, W.B. and LeCheminant, P. 2003. Ozone microbubble sparging at a California site. In, Moyer, E.E. and Kostecki, P.T. (eds.), MTBE Remediation Handbook. Springer, Amherst, Massachusetts, USA. pp. 455-472.
- Kerfoot, W.B., Ehleringer, B. and Muncy, J. 2008. Ozone sparging closure of an industrial VOC spill site adjacent to a water supply well site. Ozone: Science & Engineering 30(1): 88-92. https://doi.org/10.1080/01919510701813400
- Khadhraoui, M., Trabelsi, H., Ksibi, M., Bouguerra, S. and Elleuch, B. 2009. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse. Journal of Hazardous Materials 161(2): 974-981. https://doi.org/10.1016/j.jhazmat.2008.04.060
- Khuntia, S., Majumder, S.K. and Ghosh, P. 2012. Removal of ammonia from water by ozone microbubbles. Industrial & Engineering Chemistry Research 52(1): 318-326. https://doi.org/10.1021/ie302212p
- Khuntia, S., Majumder, S.K. and Ghosh, P. 2015. A pilot plant study of the degradation of Brilliant Green dye using ozone microbubbles: mechanism and kinetics of reaction. Environmental Technology 36(3): 336-347. https://doi.org/10.1080/09593330.2014.946971
- Khuntia, S., Majumder, S.K. and Ghosh, P. 2016. Catalytic ozonation of dye in a microbubble system: hydroxyl radical contribution and effect of salt. Journal of Environmental Chemical Engineering 4(2): 2250-2258. https://doi.org/10.1016/j.jece.2016.04.005
- Kim, C.S., Yu, S.Y., Lee, G.I., Kim, S.H., Lee, J.W. and Song, J.K. 2014. Sterilizing effect of plant pathogenic fungi using ozone microbubble. Protected Horticulture and Plant Factory 23(3): 250-255. (in Korean) https://doi.org/10.12791/KSBEC.2014.23.3.250
- Lee, I., Lee, E., Lee, H. and Lee, K. 2011. Removal of COD and color from anaerobic digestion effluent of livestock wastewater by advanced oxidation using microbubbled ozone. Applied Chemistry for Engineering 22(6): 617-622.
- Lopez-Lopez, A., Pic, J.S. and Debellefontaine, H. 2007. Ozonation of azo dye in a semi-batch reactor: a determination of the molecular and radical contributions. Chemosphere 66(11): 2120-2126. https://doi.org/10.1016/j.chemosphere.2006.09.025
-
Lucas, M.S., Peres, J.A. and Puma, G.L. 2010. Treatment of winery wastewater by ozone-based advanced oxidation processes (
$O_3$ ,$O_3/UV$ and$O_3/UV/H_2O_2$ ) in a pilot-scale bubble column reactor and process economics. Separation and Purification Technology 72(3): 235-241. https://doi.org/10.1016/j.seppur.2010.01.016 - Mestankova, H., Parker, A.M., Bramaz, N., Canonica, S., Schirmer, K., von Gunten, U. and Linden, K.G. 2016. Transformation of contaminant candidate list (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: assessment of biological effects. Water Research 93: 110-120. https://doi.org/10.1016/j.watres.2015.12.048
- Osbeck, S., Bradley, R.H., Liu, C., Idriss, H. and Ward, S. 2011. Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres. Carbon 49(13): 4322-4330. https://doi.org/10.1016/j.carbon.2011.06.005
- Suty, H., De Traversay, C. and Cost, M. 2004. Applications of advanced oxidation processes: present and future. Water Science and Technology 49(4): 227-233.
-
Takahashi, M. 2005.
$\zeta$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. The Journal of Physical Chemistry B 109(46): 21858-21864. https://doi.org/10.1021/jp0445270 - Takahashi, M., Chiba, K. and Li, P. 2007. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. The Journal of Physical Chemistry B 111(6): 1343-1347. https://doi.org/10.1021/jp0669254
- Tambosi, J.L., De Sena, R.F., Gebhardt, W., Moreira, R.F.P.M., Jose, H.J. and Schroder, H.F. 2009. Physicochemical and advanced oxidation processes-a comparison of elimination results of antibiotic compounds following an MBR treatment. Ozone: Science & Engineering 31(6): 428-435. https://doi.org/10.1080/01919510903324420
- Vandevivere, P.C., Bianchi, R. and Verstraete, W. 1998. Review: treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. Journal of Chemical Technology and Biotechnology 72(4): 289-302. https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#
- Walker, A.B., Tsouris, C., DePaoli, D.W. and Thomas Klasson, K. 2001. Ozonation of soluble organics in aqueous solutions using microbubbles. Ozone: Science & Engineering 23(1): 77-87. https://doi.org/10.1080/01919510108961990
- Wang, C., Yediler, A., Lienert, D., Wang, Z. and Kettrup, A. 2003. Ozonation of an azo dye CI Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere 52(7): 1225-1232. https://doi.org/10.1016/S0045-6535(03)00331-X
- Wu, C.H., Kuo, C.Y. and Chang, C.L. 2008. Homogeneous catalytic ozonation of CI Reactive Red 2 by metallic ions in a bubble column reactor. Journal of Hazardous Materials 154(1): 748-755. https://doi.org/10.1016/j.jhazmat.2007.10.087
- Xia, Z. and Hu, L. 2016. Remediation of organics contaminated groundwater by ozone micro-nano bubble. Japanese Geotechnical Society Special Publication 2(57): 1978-1981. https://doi.org/10.3208/jgssp.TC215-06
- Xu, P., Janex, M.L., Savoye, P., Cockx, A. and Lazarova, V. 2002. Wastewater disinfection by ozone: main parameters for process design. Water Research 36(4): 1043-1055. https://doi.org/10.1016/S0043-1354(01)00298-6
- Xu, Z., Mochida, K., Naito, T. and Yasuda, K. 2012. Effects of operational conditions on 1, 4-dioxane degradation by combined use of ultrasound and ozone microbubbles. Japanese Journal of Applied Physics 51(7S): 07GD08. https://doi.org/10.7567/JJAP.51.07GD08
- Zhang, F., Xi, J., Huang, J.J. and Hu, H.Y. 2013. Effect of inlet ozone concentration on the performance of a micro-bubble ozonation system for inactivation of Bacillus subtilis spores. Separation and Purification Technology 114: 126-133. https://doi.org/10.1016/j.seppur.2013.04.034
- Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., Smale, N. and Wang, J. 2015a. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. Journal of Hazardous Materials 287: 412-420. https://doi.org/10.1016/j.jhazmat.2015.01.069
- Zheng, T., Zhang, T., Wang, Q., Tian, Y., Shi, Z., Smale, N. and Xu, B. 2015b. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process. RSC Advances 5(95): 77601-77609. https://doi.org/10.1039/C5RA14575A
- Zhu, X.F. and Xu, X.H. 2004. The mechanism of Fe (III)-catalyzed ozonation of phenol. Journal of Zhejiang University Science 5(12): 1543-1547. https://doi.org/10.1631/jzus.2004.1543
Cited by
- Development of Natural Purification Technology Considering Material Cycle in River Reaches vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.213