• 제목/요약/키워드: Mg composite

검색결과 458건 처리시간 0.022초

Bi-materials of Al-Mg Alloy Reinforced with/without SiC and Al2O3 Particles; Processing and Mechanical Properties

  • Chang, Si-Young;Cho, Han-Gyoung;Kim, Yang-Do
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.354-361
    • /
    • 2007
  • The bi-materials with Al-Mg alloy and its composites reinforced with SiC and $Al_2O_3$ particles were prepared by conventional powder metallurgy method. The A1-5 wt%Mg and composite mixtures were compacted under $150{\sim}450\;MPa$, and then the mixtures compacted under 400 MPa were sintered at $773{\sim}1173K$ for 5h. The obtained bi-materials with Al-Mg/SiCp composite showed the higher relative density than those with $Al-Mg/Al_2O_3$ composite after compaction and sintering. Based on the results, the bi-materials compacted under 400 MPa and sintered at 873K for 5h were used for mechanical tests. In the composite side of bi-materials, the SiC particles were densely distributed compared to the $Al_2O_3$ particles. The bi-materials with Al-Mg/SiC composite showed the higher micro-hardness than those with $Al-Mg/Al_2O_3$ composite. The mechanical properties were evaluated by the compressive test. The bi-materials revealed almost the same value of 0.2% proof stress with Al-Mg alloy. Their compressive strength was lower than that of Al-Mg alloy. Moreover, impact absorbed energy of bi-materials was smaller than that of composite. However, the bi-materials with Al-Mg/SiCp composite particularly showed almost similar impact absorbed energy to $Al-Mg/Al_2O_3$ composite. From the observation of microstructure, it was deduced that the bi-materials was preferentially fractured through micro-interface between matrix and composite in the vicinity of macro-interface.

반응용탕단조법에 의한 (${Al_2}{O_3}$+Si)/Mg 하이브리드 금속복합재료의 제조 (Fabrication of Reaction Squeeze Cast (${Al_2}{O_3}$+Si)/Mg Hybrid Metal Matrix Composites)

  • 전상혁;오동현;박익민;조경목;최일동
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.109-115
    • /
    • 2000
  • In the present study, (10%$Al_2O_3$+5%Si)/AZ91 Mg hybrid composite was fabricated using the squeeze casting method. During squeeze casting, molten Mg was infiltrated into the preform of 10%$Al_2O_3$+5%Si and reaction product of $Mg_2Si$ intermetallic compound was formed by the reaction between molten Mg and Si powder. Microstructure has been observed and mechanical properties were evaluated for the reaction squeeze cast (RSC) hybrid composite. It was found that Si powder totally reacted with molten Mg to form $Mg_2Si$. Reinforcement ($Al_2O_3$) and the reaction product ($Mg_2Si$) are fairly uniformly distributed in Mg matrix for the squeeze cast hybrid composite. Mechanical properties were improved with hybridization of reinforcements, namely higher hardness and enhanced wear resistance comparing squeeze cast (15%$Al_2O_3$)/AZ91 Mg composite.

  • PDF

기계적합금화법에 의한 Mg-BaFe12O19 계 강자성 복합분말의 제조 및 자기특성 (Fabrication and Magnetic Properties of Mg and BaFe12O19 Ferromagnetic Composite Powders by Mechanical Alloying)

  • 이충효
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.61-67
    • /
    • 2021
  • Fabrication of a ferromagnetic composite powder for the magnesium and BaFe12O19 system by mechanical alloying (MA) is investigated at room temperature. Mixtures of Mg and BaFe12O19 powders with a weight ratio of Mg:BaFe12O19 = 4:1, 3:2, 2:3 and 1:4 are used. Optimal MA conditions to obtain a ferromagnetic composite with fine microstructure are investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that Mg-BaFe12O19 composite powders in which BaFe12O19 is dispersed in Mg matrix are successfully produced by MA of BaFe12O19 with Mg for 80 min. for all compositions. Magnetization of Mg-BaFe12O19 composite powders gradually increases with increasing the amounts of BaFe12O19, whereas coercive force of MA powders gradually decreases due to the refinement of BaFe12O19 powders with MA time for all compositions. However, it can be seen that the coercivity of Mg-BaFe12O19 MA composite powders with a weight ratio of Mg:BaFe12O19=4:1 and 3:2 for MA 80 min. are still high, with values of 1260 Oe and 1320 Oe compared to that of Mg:BaFe12O19=1:4. This clearly suggests that the refinement of BaFe12O19 powders during MA process for Mg:BaFe12O19=4:1 and 3:2 tends to be suppressed due to ductile Mg powders.

자전연소합성법 및 교반주조 공정으로 제조된 TiC/Mg 금속복합재료의 특성연구 (Characterization of TiC/Mg Composites Fabricated by in-situ Self-propagating High-temperature Synthesis followed by Stir Casting Process)

  • 이은경;조일국
    • Composites Research
    • /
    • 제33권5호
    • /
    • pp.256-261
    • /
    • 2020
  • 본 연구에서는 Al-Ti-C 반응계의 점화온도에 대해 고찰하고, 자전연소합성법 및 교반주조 공정을 통해 TiC/Mg 금속복합재료를 제조하여 미세조직 및 기계적 특성을 분석하였다. 0, 10, 20, 30 vol.% TiC 입자가 균일하게 분산된 Mg 복합재료를 제조하였고, 강화재의 양이 증가할수록 기지 대비 우수한 압축강도 및 내마모특성을 보였다. 이는 in-situ 자전연소합성법에 의해 결함이나 불순물 등의 오염이 적은 TiC/Mg 금속복합재료 제조로 기지에서 강화재로의 효과적인 하중 전달에 의한 것으로 판단된다.

무가압 침윤법에 의한 $Al_2$O$_.3$/Al 복합재료 제조와 기계적 특성 (Fabrication and Mechanical Property of $Al_2$O$_.3$/Al Composite by Pressureless Infiltration)

  • 이동윤;박상환;이동복
    • 한국세라믹학회지
    • /
    • 제35권3호
    • /
    • pp.303-309
    • /
    • 1998
  • The fabrication of Al2O3/Al composite by pressureless infiltration was investigated by the change of Mg and Si content in Al alloy infiltration process and infiltration atmosphere. The effect of alloying elements infiltration atmosphere and interfacial reactants between Al alloy matrix and Al2O3 particles were in-vestigated in terms of bendingstrength and harness test,. The fabrication of Al2O3/Al composite by the vestigated in terms of bending strength and hardness test. The fabrication of Al2O3/Al composite by the pressureless infiltration was done in nitrogen atmosphere with Mg in Al alloy. It was successfully fabricated at $700^{\circ}C$ according to Mg contents in Al alloy and infiltration condition. Because Mg in the Al alloy and ni-trogen atmosphere of infiltratio condition produced Mg-N compound(Mg3N2) it decreased the wetting an-gle between molten Al alloy and Al2O3 particles by coating on surface of Al2O3 particles. The fracture strength of Al2O3/Al-Mg composite was 800MPa and Al2O3/Al-Si-Mg composite was 400MPa. Si in Al alloy decreased the interfacial strength between Al alloy matrix and Al2O3 particles.

  • PDF

이온 보조 증착에 의해 제작된 $MgF_2-TiO_2$ 혼합 박막의 광학적, 구조적 특성 분석 (Characterizations of optical properties and microstructures of composite $MgF_2-TiO_2$ films fabricated by ion assisted deposition)

  • 성창민;반승일;김형근;김석원;한성홍
    • 한국광학회지
    • /
    • 제8권5호
    • /
    • pp.382-386
    • /
    • 1997
  • MgF$_{2}$와 TiO$_{2}$를 각각 다른 두 증발원으로부터 동시에 증착시켜 혼합 박막을 제작하였다. 박막의 특성을 개선시키기 위해 이온 보조 증착(IAD)을 하였다. 제작된 MgF$_{2}$-TiO$_{2}$ 혼합 박막의 원소 조성비, 광학적 특성과 결정 구조를 분석하였다. 상대적 증착률을 달리하여 제작된 MgF$_{2}$-TiO$_{2}$ 혼합 박막의 Mg:Ti의 조성비는 비선형적으로 변화하였으며, MgF$_{2}$의 조성비를 상대적으로 증가시킴에 따라 혼합 박막의 굴절률은 감소하였고 Drude 모델을 잘 만족함을 알 수 있었다. 그리고 MgF$_{2}$의 조성비가 증가할수록 비정질인 TiO$_{2}$ 구조 사이에 다결정질인 MgF$_{2}$의 양이 증가하여 결정성을 갖는 박막으로 성장함을 확인하였다.

  • PDF

Effect of Hot-forging on NiTi Shape Memory Alloy Fibers Reinforced Mg Alloy Composite

  • Guo, Qi;Li, Gang;Tang, Renjian;Yan, Biao
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.846-847
    • /
    • 2006
  • The composite used in this paper was prepared by hot-pressing ball-milled Mg alloy powders, in which NiTi shape memory alloy fibers in a row were sandwiched. The microstructure and property were examined. It is shown that the composite consisted of a homogenous matrix with uniformly distributed NiTi shape memory alloy fibers, recrystallization took place in the Mg alloy matrix which was subjected to plastic deformation an adequate bonding formed between the matrix and fibers; the density and tensile strength of the composite increased after the hot-forging; the hot-forging process is capable of improving properties of the composite.

  • PDF

반응용탕단조법에 의한 $(Al_2O_3+Si)/Mg$ 하이브리드 금속복합재료의 제조 및 특성평가 (Fabrication and Properties of Reaction Squeeze Cast $(Al_2O_3+Si)/Mg$ Hybrid Metal Matrix Composites)

  • 오동현;전상혁;박익민;조경목;최일동
    • 한국주조공학회지
    • /
    • 제20권1호
    • /
    • pp.13-20
    • /
    • 2000
  • In the present study,($10%Al_2O_3+5%Si$)/AZ91 Mg hybrid composite was fabricated using the squeeze casting method. During squeeze casting, Molten Mg was infiltrated into the preform of $10%Al_2O_3+5%Si$ and reaction product of $Mg_2Si$ intermetallic compound was formed by the reaction between molten Mg and Si Powder. Microstructure has been observed and mechanical properties were evaluated for the reaction squeeze cast(RSC) hybrid composite. It was found that Si powder totally reacted with molten Mg to form $Mg_2Si$. Reinforcement($Al_2O_3$) and the reaction product ($Mg_2Si$) are fairly uniformly distributed in Mg Matrix for the squeeze cast hybrid composite. Mechanical Properties were improved with hybridization of reinforcements, namely higher hardness and enhanced wear resistance comparing squeeze cast($15%Al_2O_3$)/AZ91 Mg composite.

  • PDF

The effects of Mg2Si(p) on microstructure and mechanical properties of AA332 composite

  • Zainon, Fizam;Ahmad, Khairel Rafezi;Daud, Ruslizam
    • Advances in materials Research
    • /
    • 제5권1호
    • /
    • pp.55-66
    • /
    • 2016
  • This paper describes a study on the effects of $Mg_2Si_{(p)}$ addition on the microstructure, porosity, and mechanical properties namely hardness and tensile properties of AA332 composite. Each composite respectively contains 5, 10, 15, and 20 wt% reinforcement particles developed by a stir-casting. The molten composite was stirred at 600 rpm and melted at $900^{\circ}C{\pm}5^{\circ}C$. The $Mg_2Si$ particles were wrapped in an aluminum foil to keep them from burning when melting. The findings revealed that the microstructure of $Mg_2Si_{(p)}/AA332$ consists of ${\alpha}$-Al, binary eutectic ($Al+Mg_2Si$), $Mg_2Si$ particles, and intermetallic compound. The intermetallic compound was identified as Fe-rich and Cu-rich, formed as polygonal or blocky, Chinese script, needle-like, and polyhendrons or "skeleton like". The porosity of $Mg_2Si_{(p)}/AA332$ composite increased from 8-10% and the density decreased from 9-12% from as-cast. Mechanical properties such as hardness increased for over 42% from as-cast and the highest UTS, elongation, and maximum Q.I were achieved in the sample of 10% $Mg_2Si$. The study concludes that combined with AA332, the amount of 10 wt% of$Mg_2Si$ is a suitable reinforcement quantity with the combination ofAA332.

Rheo-Compocasting법으로 제조한 Mg/SiCp 복합재료의 조직 및 경도 특성에 미치는 Zn, Zr 첨가의 영향 (Effects of Zn, Zr Addition on Microstructures and Hardness of Mg/SiCp Composites Fabricated by Rheo-Compocasting)

  • 홍성길;최정철
    • 한국주조공학회지
    • /
    • 제15권6호
    • /
    • pp.588-595
    • /
    • 1995
  • SiC particles reinforced Mg-Zr, Mg-Zn and Mg-Zn-Zr composites were manufactured by Rheocompocasting method. Effects of Zn, Zr addition on microstructures and hardness were investigated by using the micro Vickers hardness tester, the optical and scanning electron microscopy. By the Zr addition to the pureMg/SiCp composites, SiC particles become more homogeneously dispersed and grain refined so that the micro hardness of the composite increased. In case of Zn addition, although grain refinement and homogeneous dispersion effects of SiC particles were not obtained, hardness was more increased than the only Zr added composite by the formation of many Mg-Zn intermetallic compounds at grain boundary. In the Mg-Zn-Zr/SiCp composite, the highest value of hardness was obtained by triple effects such as grain refining, dispersion hardening of SiC particles and Mg-Zn compounds.

  • PDF