• 제목/요약/키워드: Metric connection

검색결과 154건 처리시간 0.026초

LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE SASAKIAN MANIFOLD WITH A NON-METRIC θ-CONNECTION

  • Jin, Dae Ho
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제21권4호
    • /
    • pp.229-236
    • /
    • 2014
  • In this paper, we study two types of 1-lightlike submanifolds, named by lightlike hypersurface and half lightlike submanifold, of an indefinite Sasakian manifold admitting non-metric ${\theta}$-connections. We prove that there exist no such two types of 1-lightlike submanifolds of an indefinite Sasakian manifold.

ASSOUAD DIMENSION: ANTIFRACTAL METRIZATION, POROUS SETS, AND HOMOGENEOUS MEASURES

  • Luukkainen, Jouni
    • 대한수학회지
    • /
    • 제35권1호
    • /
    • pp.23-76
    • /
    • 1998
  • We prove that a non-empty separable metrizable space X admits a totally bounded metric for which the metric dimension of X in Assouad's sense equals the topological dimension of X, which leads to a characterization for the latter. We also give a characterization based on this Assouad dimension for the demension (embedding dimension) of a compact set in a Euclidean space. We discuss Assouad dimension and these results in connection with porous sets and measures with the doubling property. The elementary properties of Assouad dimension are proved in an appendix.

  • PDF

GEOMETRIC CHARACTERISTICS OF GENERIC LIGHTLIKE SUBMANIFOLDS

  • Jha, Nand Kishor;Pruthi, Megha;Kumar, Sangeet;Kaur, Jatinder
    • 호남수학학술지
    • /
    • 제44권2호
    • /
    • pp.179-194
    • /
    • 2022
  • In the present study, we investigate generic lightlike submanifolds of indefinite nearly Kaehler manifolds. After proving the existence of generic lightlike submanifolds in an indefinite generalized complex space form, a non-trivial example of this class of submanifolds is discussed. Then, we find a characterization theorem enabling the induced connection on a generic lightlike submanifold to be a metric connection. We also derive some conditions for the integrability of distributions defined on generic lightlike submanifolds. Further, we discuss the non-existence of mixed geodesic generic lightlike submanifolds in a generalized complex space form. Finally, we investigate totally umbilical generic lightlike submanifolds and minimal generic lightlike submanifolds of an indefinite nearly Kaehler manifold.

GENERIC LIGHTLIKE SUBMANIFOLDS OF SEMI-RIEMANNIAN PRODUCT MANIFOLDS

  • Nand Kishor Jha;Jatinder Kaur;Sangeet Kumar;Megha Pruthi
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.847-863
    • /
    • 2023
  • We introduce the study of generic lightlike submanifolds of a semi-Riemannian product manifold. We establish a characterization theorem for the induced connection on a generic lightlike submanifold to be a metric connection. We also find some conditions for the integrability of the distributions associated with generic lightlike submanifolds and discuss the geometry of foliations. Then we search for some results enabling a generic lightlike submanifold of a semi-Riemannian product manifold to be a generic lightlike product manifold. Finally, we examine minimal generic lightlike submanifolds of a semi-Riemannian product manifold.

ON PROJECTIVELY FLAT FINSLER SPACES WITH $({\alpha},{\beta})$-METRIC

  • Park, Hong-Suh;Lee, Il-Yong
    • 대한수학회논문집
    • /
    • 제14권2호
    • /
    • pp.373-383
    • /
    • 1999
  • The ($\alpha$,$\beta$)-metric is a Finsler metric which is constructed from a Riemannian metric $\alpha$ and a differential 1-from $\beta$;it has been sometimes treated in theoretical physics. The condition for a Finsler space with an ($\alpha$,$\beta$)-metric L($\alpha$,$\beta$) to be projectively flat was given by Matsumoto [11]. The present paper is devoted to studying the condition for a Finsler space with L=$\alpha$\ulcorner$\beta$\ulcorner or L=$\alpha$+$\beta$\ulcorner/$\alpha$ to be projectively flat on the basis of Matsumoto`s results.

  • PDF

PSEUDO-HERMITIAN MAGNETIC CURVES IN NORMAL ALMOST CONTACT METRIC 3-MANIFOLDS

  • Lee, Ji-Eun
    • 대한수학회논문집
    • /
    • 제35권4호
    • /
    • pp.1269-1281
    • /
    • 2020
  • In this article, we show that a pseudo-Hermitian magnetic curve in a normal almost contact metric 3-manifold equipped with the canonical affine connection ${\hat{\nabla}}^t$ is a slant helix with pseudo-Hermitian curvature ${\hat{\kappa}}={\mid}q{\mid}\;sin\;{\theta}$ and pseudo-Hermitian torsion ${\hat{\tau}}=q\;cos\;{\theta}$. Moreover, we prove that every pseudo-Hermitian magnetic curve in normal almost contact metric 3-manifolds except quasi-Sasakian 3-manifolds is a slant helix as a Riemannian geometric sense. On the other hand we will show that a pseudo-Hermitian magnetic curve γ in a quasi-Sasakian 3-manifold M is a slant curve with curvature κ = |(t - α) cos θ + q| sin θ and torsion τ = α + {(t - α) cos θ + q} cos θ. These curves are not helices, in general. Note that if the ambient space M is an α-Sasakian 3-manifold, then γ is a slant helix.

A NEW STUDY IN EUCLID'S METRIC SPACE CONTRACTION MAPPING AND PYTHAGOREAN RIGHT TRIANGLE RELATIONSHIP

  • SAEED A.A. AL-SALEHI;MOHAMMED M.A. TALEB;V.C. BORKAR
    • Journal of applied mathematics & informatics
    • /
    • 제42권2호
    • /
    • pp.433-444
    • /
    • 2024
  • Our study explores the connection between the Pythagorean theorem and the Fixed-point theorem in metric spaces. Both of which center around the concepts of distance transformations and point relationships. The Pythagorean theorem deals with right triangles in Euclidean space, emphasizing distances between points. In contrast, fixed-point theorems pertain to the points that remain unchanged under specific transformations thereby preserving distances. The article delves into the intrinsic correlation between these concepts and presents a novel study in Euclidean metric spaces, examining the relationship between contraction mapping and Pythagorean Right Triangles. Practical applications are also discussed particularly in the context of image compression. Here, the integration of the Pythagorean right triangle paradigm with contraction mappings results in efficient data representation and the preservation of visual data relation-ships. This illustrates the practical utility of seemingly abstract theories in addressing real-world challenges.

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik;Pyo, Yong-Soo;Shin, Young-Lim
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.503-515
    • /
    • 2011
  • Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.

CONNECTIONS ON ALMOST COMPLEX FINSLER MANIFOLDS AND KOBAYASHI HYPERBOLICITY

  • Won, Dae-Yeon;Lee, Nany
    • 대한수학회지
    • /
    • 제44권1호
    • /
    • pp.237-247
    • /
    • 2007
  • In this paper, we establish a necessary condition in terms of curvature for the Kobayashi hyperbolicity of a class of almost complex Finsler manifolds. For an almost complex Finsler manifold with the condition (R), so-called Rizza manifold, we show that there exists a unique connection compatible with the metric and the almost complex structure which has the horizontal torsion in a special form. With this connection, we define a holomorphic sectional curvature. Then we show that this holomorphic sectional curvature of an almost complex submanifold is not greater than that of the ambient manifold. This fact, in turn, implies that a Rizza manifold is hyperbolic if its holomorphic sectional curvature is bounded above by -1.