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CONNECTIONS ON ALMOST COMPLEX FINSLER
MANIFOLDS AND KOBAYASHI HYPERBOLICITY

DAE YEON WON AND NANY LEE

ABSTRACT. In this paper, we establish a necessary condition in terms of
curvature for the Kobayashi hyperbolicity of a class of almost complex
Finsler manifolds. For an almost complex Finsler manifold with the con-
dition (R), so-called Rizza manifold, we show that there exists a unique
connection compatible with the metric and the almost complex structure
which has the horizontal torsion in a special form. With this connection,
we define a holomorphic sectional curvature. Then we show that this
holomorphic sectional curvature of an almost complex submanifold is not
greater than that of the ambient manifold. This fact, in turn, implies
that a Rizza manifold is hyperbolic if its holomorphic sectional curvature
is bounded above by —1.

1. Introduction

It is known that if a complex manifold admits a Hermitian metric with
holomorphic sectional curvature bounded above by —1, it is hyperbolic in the
sense that its Kobayashi pseudo-distance is a distance (see, e.g., {5]). In [6], S.
Kobayashi extended his concept of hyperbolicity to almost complex manifolds
and obtained the hyperbolicity criterion for almost Hermitian manifolds. In
[9], authors studied various connections on almost complex Finsler manifolds
in pursuit of application to global properties of the manifolds. Here we fur-
ther explore the usage of such connections and extend Kobayashi’s results to
so-called Rizza manifolds, almost complex Finsler manifolds with the compat-
ibility condition (R} on the Finsler metric and the almost complex structure.

In §2, we set up the notations for Rizza manifolds and cook up a unitary
frame bundle. For a Rizza manifold (M, J, L), we consider the pull-back bundle
T pTM — TM of the tangent bundle 7 : TM — M by the projection
p:TM — M. Here TM = TM \ {zero section of # : TM — M}. Let 7 :
FM — TM be a Finsler bundle: an associated frame bundle of 7 : p*TM —
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TM. We define a generalized Finsler structure G; satisfying Gi; = GpgJ? J?
from L. Then we construct a special subbundle FU(M) of the Finsler bundle
FM over TM : FU (M) is roughly the intersection of the complex frame
bundle FC(M) defined by the almost complex structure J and the orthogonal
frame bundle FO(M) defined by the generalized metric G;;. It turns out that

FU(M) — TM is a principal bundle over TM with the structure group & (n).

In §3, we cook up various connections and define the torsion and the curva-
ture. A connection on FU(M) induces a connection V on 7 : p*TM — TM
satisfying VG = 0 and VJ = 0. To choose the most natural connection among
such connections, we impose an extra condition on the torsion of the connection
V. In order to define the torsion, we introduce a linear connection on T(TM)C.
The complexification p*T'M® of p*T'M can be decomposed into p*TM° and
p*TM%! by the almost complex structure J. Now the connection V on p*T M
can be extended complex linearly to p*T'M (i.lf we have a non-linear connec-
tion, i.e., T(TM) = H+V, then we have T(T M) = H® + VC. The connection
V on p*TM® produces a linear connection on T(]f“\]\g)‘C and so we can define a
torsion of V as that of a linear connection on T(TM )€. And hence the torsion
has horizontal and vertical components. We then prove a Theorem 3.1 on the
existence of a special connection. This is a generalization of the canonical con-
nection of a almost Hermitian manifold introduced by Kobayashi [6, 7). With
the canonical connection V, we define the holomorphic sectional curvature
Kr(v) along v € T, M as usual.

In §4, we prove one of the main ingredient: non-increasing property of the
curvature for submanifolds. On an almost complex submanifold M’ of a Rizza
manifold (M, J, L), we will produce a canonical connection and its curvature.
And then we show that the holomorphic sectional curvature of M’ does not
exceed that of M (see, e.g., [2] for the Hermitian case). This is crucial in
proving the Theorem 5.2.

In §5, we do some analysis on the holomorphic map f : D(0,1) — M.
The canonical connection defined in §3 enables us to do such computation.
As a consequence, we generalize a theorem of Kobayashi on the hyperbolicity
criterion for almost Hermitian manifolds by Kobayashi [6] to Rizza manifolds:

Theorem 5.2 (Main Theorem). If (M, J,L) is a Rizza manifold whose holo-
morphic sectional curvature Kg is bounded above by —1, then M 1s hyperbolic.

Acknowledgement. S. Kobayashi pointed out to us the possibility of extend-
ing the choice of connections of almost Hermitian manifolds to almost complex
Finsler manifolds. Nany Lee wishes to express her deep gratitude to late S. S.
Chern for his generous support during her stay in Tianjin in August, 2004.

2. Preliminaries

Let M be a 2n-dimensional manifold with an almost complex structure J
and a Finsler metric L. We call the triple (M, J, L) a Rizza manifold if the
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following condition, the Rizza condition, is satisfied:
(R) L(z,¢9(y)) = L(z,y) foralz € M, y € T,M and € R,

where ¢g(y) = (cos@)y + (sin#)Jy. The Rizza condition guarantees that the
tangent space at any point of a Rizza manifold is a complex Banach space.
Let (z!,...,2™) be a local coordinate system of M and (z?, ..., 22", y!,
y*") be a local coordinate system of TM induced 1 by (z Lo 2™,
Now consider the pull-back bundle 7 : pT™ — TM of the tangent bun-
dle 7 : TM — M by the projection p : TM — M. Here TM = TM \
{zero section of 7 : TM — M} is the slit tangent bundle.

»TM —2 s TM

1‘1’-1 ln

m—»M
p

Let g;; = %%. If g;; satisfies g:;(2,y) = gpg(z, ) J} (x)J](2), then g;;
is a-priori a Riemannian metric(see [3]). This is why we are interested in the
condition (R) for almost complex Finsler manifolds.

Now define Gi;(z,y) = ${gi;(z,y) + 9pa(@,y)J} (x)J](x)}. Then Gy is a
generalized Finsler structure and satisfies G;; = GpgJP'J. J{I' This Gj; defines a

Riemannian structure G on # : p*TM — TM by
Gy(U, V) = Gij(z,y)u'v?!  for U=} 2 (o @)

This G is an almost Hermitian structure on p*TM , i.e., G(U, V) = G(JU, U,JV).

Let # : FM — TM be an associated frame bundle of 7 : p*TM — TM as
in [10]. Now consider a subbundle FU(M) of FM defined in the following way.
Let R?" be equipped with a Euclidean inner product and T, M ~ 7Yz, y)
with the Hermitian structure G, ). u € FM with #(u) = (z,y) is in FU(M)
if v, as a linear map u : R?™ — T, M , is orthogonal and satisfies Jou = uo J,.
Here J, is the canonical complex structure of R2".

Let {e1,...,€an} be the standard basis of R?" and let {el, ceey By Jer, .
Jen} be a local orthonormal frame field of p*TM — TM over an open set
O C TM. To each u € FU(M), we assign an element (z,y,a) € O x U(n),
where #(u) = (z,y) and a = (o)) defined in the following way. If we put
u(es) = Abey + BlJey for a =1,2,...,n, then

U(€nta) =uo Jo(eg) = Joule,) = —BZeb + AZJeb.
Furthermore, by the orthogonality of u, we have
65 = G(ulea), u(e.)) = (AA* + BB,
0 = G(u(ea), ulec)) = (BA* ~ ABt)Za

— ot 0
andV—v 37
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where A = (A%) and B = (B?). Now define o = A+ +/—1B.
Then
agt = AA' + BB' + v_1(BA' — ABY) = Id,
ie., (—AB IZ) € O(2n). Thus a € U(n). And the map u — (z,y,a) gives a
local trivialization of FU({M). In summary, we have

Proposition 2.1. FU(M) — T™M is a principal bundle over TM with the
structure group U(n).

3. Connections on the unitary frame bundles

The principal bundle FU{(M) in Proposition 2.1 admits a connection. Its
connection form & is a u(n)-valued 1-form on FU(M). The connection form

@ induces an affine connection V on p*TM — ™ making both G and J
parallel: VG =0 and VJ =0
Now the connection form for V is a locally defined u(n)-valued 1-form w on

TM. Fix an orthonormal frame field o(z,y) = {61,...,€n,.]€1,..., Jen} on
p*TM — TM. This o is a local section of FU(M) — TM and let w = 0*@.
Then w is a u(n)-valued 1-form on TM of the form

w=(5% )

We then have a covariant derivative on p*TM — TM defined by
Ve, = Pley + Qb Jey,
VJes = —Qbey + PlJey.

Note that the complexification (p*TM)C of p*TM can be decomposed into
p*TMY° and p*TM%! by the almost complex structure J , where p*TM10 =
{X -V/-1JX | X € p*TM} and p*TM%! = {X +/-1JX | X € p*TM}.
Now the connection V on p*T'M can be extended complex linearly to p*T M. ¢
In terms of the local basis {e, = (e, — v—1Je,)}?_; for the complex vector
space of type (1,0) and {8, = % (ea + v~ Jea)}a:1 for that of type (0,1), w
have

Ve, = %V(ea —V=1Jey) = d)geb and Ve, = Ve, = 1/_13(31,,
where 9% = P? + /—1Q?.

Next we consider a non-linear connection of TTM. Let N} be a fixed non-
linear connection of TTM. Then TTM = H @ V, where H is the horizontal

subspace of TTM with the basis { For = 621 ~ N7 & By7 } and V is the vertical

n
subspace of TTM with the basis { 6‘9 } . With the identifications x™ (%) =
from p*TM onto H and (56—) = 3% from p*TM onto V, we have the

59:1
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almost complex structure J on H and on V in such a way that Jox™ = x™oJ
and JoxV =xY ol

Consider the complex tangent space HLO of type (1,0) of H® with the basis
{elt = 1 (x"(ea) — V=1Jx"(ea)) }._, and H*' of type (0,1) with the basis
{elt = 3 (x"(ea) + V=TJxM(eq)) }a:1 . Similarly V¢ = V0@ V%1 where V10
is spanned by {e) = 3 (xV(ea) — \/:TJxv(ea))}:zl and V%! is spanned by
{e¥ = 3 (xV(ea) + V=1Jx"(ea)) }n . Then we define a Hermitian metric on
TTM® so that {ea ,ert, eV eV} is orthonormal and we define the induced linear
connection on TM by

=yhelt, Vel =dtel,
=yhey, Ve, =dbey.
We now define the torsion of the connection V on p*TM — TM as that of

the induced linear connection on TM. Let {69,69,¢°, 4%} be the coframe ﬁeld
dual to {ea Jen eV V} For the canonical 1-form 7 = §° @ e’ + ¢* ® ¢ on

a a’ a

T™ , define the torsion Dn of the connection V by
Dy =df® ® el + d¢* @ e¥ — 0" Aylelt — ¢* Aypbe)
=0l +0°®e),
where ©% = d§® + ¥ A 0° and ®° = dp® + ¢¢ A ¢.

Definition 3.1. ©% = d0° + ¢} A 6° is called the horizontal torsion of the
connection V and ®¢ = d¢* + 9§ A #° is called the vertical torsion of the
connection V.

Next we define the holomorphic sectional curvature of the connection V. Let
the curvature of the connection be

0f = duf + % Awj
and let a (1, 1)-component le’l of Q¢ be R
Rb Cd_gc /\od + Rbacnigc A (z—)d + Rba('::de_c A ¢d + Rba;c(i¢c A (,Z_Sd.

Definition 3.2. The holomorphic sectional curvature Kg(v) of L along v €
T, M is defined by

2

Kr(v) = E(—v‘ﬁ(Q(X,X)X,X)u
— 2 cpd,bna L crd, b-a
= Gop ——5GoaR, VD G(v)QRbﬁcgvvvv

where x : TM — M is the horizontal radial section defined by x(v) = v@eX|,

forvefj\v/f.
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Finally we are ready to define a special connection on a Rizza manifold
(M, J, L). We call this uniquely defined connection the canonical connection of
the Rizza manifold (M, J, L).

Theorem 3.1. For a Rizza manifold (M, J, L), there ezists a unique connection
V onp*TM — TM such that VG =0, VJ =0 and

0*(H,H) =0 and ©%(H,V) =0,
where ©% is the horizontal torsion of V.

Proof. Let 9, be the connection form on p*T'M induced by a connection on
FU(M). Then 1), is a u(n)-valued 1-form. And hence VG =0 and VJ =0,
where V is the connection on p*TM whose connection form is t,. Let the
(1,1) -component of the horizontal torsion ©2% be

(O = Af6° A6° + B8 A ¢° + CLLO” A ¢° + Di¢® A g°.
Now define a new u(n)-valued connection ¢ by

Yy = 'wog + Agaéc + Bga‘l—sc - AZEHC - BZE¢>C.

Clearly G and J are parallel with respect to the new connection 1. The (1,1)-
component of its horizontal torsion ©¢ is

(O™ = (99)™ — Ag6® A 6° — Biyt" A ¢°
= C0° A ¢° + Dig® A ¢°.
Then ©%(H,H) =0 and ©%(H,V) = 0. Thus 1 is the desired connection.
Now for the uniqueness of such connections, assume that there exist two

such connections 1, and 49 with the corresponding horizontal torsions ©; and
O5 respectively. Since 1, and 15 are skew-Hermitian, we may put

Y1§ — Pap = Ep6° — Eg.0° + Fir¢® — Fo.6°.
Then
(©1° — O™ = [(Wh1§ — ¢hag) A O
= —E2.0°NB° —~ F2.6° N 6P
Since ©%(H,H) = 0 and ©¢(H,V) =0 for i = 1,2, E. = F°, = 0 which means
Y1y = Yoy 0

Modifying the proof of Theorem 3.1, we further prescribe the horizontal
component of the torsion:

Corollary 3.2. For a Rizza manifold (M, J, L), and given P& and Qf. there
erists a unique connection V. on p*T'M — TM such that VG = 0, VJ =0
and

0°(eft, &) = Py and ©%(e}t, &) = Q4

where ©% is the horizontal torsion of V.
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We have the following analogue of Theorem 3.1 by imposing the conditions
on the vertical torsion.

Theorem 3.3. For a Rizza manifold (M, J, L), there exists a unique connection
V on p*TM — TM such that VG =0, VJ =0 and

®*(V,H) =0 and ®*(V,V) = 0,
where ®¢ is the vertical torsion of V.

Corollary 3.4. For a Rizza manifold (M, J, L), and given P% and Qf, there

e

exists a unique connection V. on p*TM — TM such that VG =0, VJ =0
and

ea(e;}’ éz{) = PI;IE and ga(e;}v éf) = an
where ©% is the horizontal torsion of V.

Remark. For a complex Finsler manifold, the Chern-Finsler connection has
a torsion whose horizontal (1,1) torsion vanishes and whose vertical torsion
has no 8% A ¢* and ¢* A ¢* terms. So both connections in Theorem 3.1 and
Theorem 3.3 are generalizations of the Chern-Finsler connection for complex
Finsler manifolds. As we will see in §4, the connection in Theorem 3.1 is much
more useful than the one in Theorem 3.3. This is why we call the connection
in Theorem 3.1 the canonical connection.

4. Curvature of almost complex submanifolds of Rizza manifolds

Let (M, J, L) be a Rizza manifold of dimension 2n and let M’ be a 2m-
dimensional almost complex submanifold of M, i.e., at each point of z € M’,
the tangent space T, M’ is invariant under J. A Rizza metric L on M induces
a Rizza metric on M’. Here we show that the holomorphic sectional curvature
of M’ is not greater than that of M. This is a generalization of the well-known
property in Hermitian geometry(see, e.g., [2]) and is essential in the proof
of Lemma 5.1. Hereafter, we denote by R'y;.45, K, etc., the corresponding
quantities Ryz.5, Kr, on M'.

Let {e1,...,en,Je1,..., ey} be a local orthonormal frame field on p*TM
such that {ey,...,em,Je1, ..., Jen} are tangent to M’. If {9%,8%} is dual to
{e¥, &M}, then ™! = ... = ™ = 0 on M'. Let (¢¢) be the canonical connec-

ara

tion on M and ©% = d6° + ¢ A 6° be its horizontal torsion.

If we restrict O" = d6" + Y, _, ¥7 A 6° to TM' forr = m+1,...,n, then
we have ©" = 31", 47 A 6°. Since @/“\(_7/'{,7:1) =0 and ©%(H,V) =0, ¥} (1 <
b<m, m+1 <r <n)restricted to TM’ are of type (1,0). And hence we may
put 9} = h5,0° + hy ¢° on TH'.
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Note that ¢' = (¥), y.1 ., defines a canonical connection on M’. Let Q'
be the curvature of ¢'. Then

Oy =dy'; +Zw'“w = Y wravr =08 Y YpAY;

r=m+1 r=m+1

Z Ry hT 0 A 6% — terms containing no ¢ A §°

Y] _ _ 2Y13
and so R bacd — Rbdcd - er—m-l—l hbchad
For a unit vector v =Y . v%, in T, M’, we have

n
K (v) = 2R 4550"0" 0% = Kp(v) — 2 Z Ry AT 5% uCT?
r=m+1
2

=Kr(v)-2 Y Zhbcvv < Kr(v).

r=m+1 |b,c=1
In summary, we have

Theorem 4.1. Let M’ be an almost complex submanifold of a Rizza manifold
(M, J,L). Then
Kw(v) < Kp(v) for allv e T, M'.

for the canonical connection on T'M'.

5. Kobayashi Hyperbolicity of Rizza manifolds

In this section, we establish a necessary condition for the Kobayashi hyper-
bolicity of Rizza manifolds. Recall that a mapping f : D(0,1) — M from a
unit disk D(0, 1) into an almost complex manifold M is called holomorphic if
Jo fo = f.oJ, where J is the complex structure on D(0,1). The concepts
of Kobayashi pseudo-distance and hyperbolicity for complex manifolds can be
extended to our setting as usual. For a description of intrinsic metrics and
hyperbolicity in detail, we refer to [5].

Now we do some analysis on the holomorphic maps.

Lemma 5.1. Let w € T,M, w # 0. For a holomorphic map f: D(0,1) - M
with f*(a%k)) =w,

L(w) _

—== < la| fKp<-1.

\/5 = | I f F >

Proof. Let S = {z € D(0,1) : f, is singular at z} and D' = D(0,1) \ S and
M’ = f(D'). Since f is holomorphic and S is discrete, M’ is an almost complex
submanifold of M. Now we have a basis {fu, fu} of Tf;)M’ for z € D', where

Jfu = f*(a%) and f, = f*(%). Note that f, = J o fy,. Let (u,v,y',%%) be a
local coordinate system of TM' given by = = f(u,v) and y = y* fu + ¥ fo.



KOBAYASHI HYPERBOLICITY FOR ALMOST COMPLEX FINSLER MANIFOLDS 245

For a local orthonormal frame field of p*T'M’ — W, consider

fu o
G(a:,y)(fuvfu) G(m,y)(fuy fu)

Now instead of a rectangular coordinate system (y!,4?), let us use a polar
coordinate system (r,6). Then for y € TM’, the Rizza condition (R)

L2(x y) = L%(z,rcosOf, + rsinbf,) = r2L*(x, f.)
implies that Z a &L — 0 and aL = 0. Thus

9 (z,y) = —83_ = Z Z L2 =0
ayF N Y) = Gk ayiay ot Brs o6t rsaet o)

s+t=3 t=0

e(z,y) = and Je(z,y) =

ie., gij(z,y) is independent of y and so is G;;(x,y). Therefore

VG fur fu) = \[Gla gy (fus Fu) = L(fu)
is a function of z € f(D(0,r)), say h(z). Then

e(z,y) = #&;—) and Je(w,y) = h{;)

Following the notations in §2, we put

= 3(e = V-1Je) = g (fu = V=1£f),

Mok VTTR) =k (- V).
6 = h{du+ v—1dv), ¢ = h(dy' + V—10y%).
Notice that the canonical connection 1 of M’ is of the form af — a8+ B¢ — 3.
And its horizontal torsion is
O=di+YNb6=dllogh) N0+ NE.
Then, by direct computation, O(e’,&") = 0 implies @ = d(logh)(e™) =

sz (A — V/=1hy) and ©(e™,&") = 0 implies 5 = 0. .
Next its curvature is Q =daA@ —danf+aAdf —a A df. Since

€

_ _ Alogh |VA|?
HY HY
da(e™) =da(e™) = 2 A
_ h|?

adf(e’ &) = —adf(eM, ™) = _LZT%'—’

we have Alog h
H Hy __ =108
Qe™,e™") = Sh
Thus the holomorphic sectional curvature along e € T, M’ is
Alogh
Kr(e) = 2Ry = ——‘th )

which is < —1 by Theorem 4.1.
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Put 0 < r < 1. Let D(0,7) be the disk with center 0 and radius r. Con-
sider g(z) = 22 on D' N D(0,7), where p.(2) = ;—TP Note that do? =

pr(2)
pr(z)dzdz is the Poincaré metric on D(0,r) and its (Gaussian) curvature is
K= —A—%‘”— = —1. And g(z) is continuous and non-negative. Since h(z) is

bounded above on D(0,7) and p,(z) — oo as |z| — 7, limy,|_,, g(z) = 0. Thus
g(z) attains its maximum at some 79 € D’ N D(0,r). And hence

0> Alogg(mg) = Alogh — Alog p,
= —Kr(e) - h*(10) — pr*(70)
> h*(10) — pr*(70) ,

ie., glr) = h((TT‘;)) < 1 which means h(o) =~ =g(0) < g(rg) =<1,for0<r < 1.

Letting r — 17, h(0) < 2. Thus

Lw) = ol2 (3~ v14) = A < Vi

O

Recall that the infinitesimal Kobayashi metric K of w € T,M, w # 0, is
defined by K(w) = inf {|a|} , where the infimum is taken over the holomorphic
maps f : D(0,1) — M satisfying f(0) = p and f, (a(—%|o) = w. In case,
the Kobayashi pseudo-distance dg induced by K is a distance, we call M
hyperbolic.

By Lemma 5.1, we have

L(w)
K > >0 forall0£AweTM,
F(w) 2 3 #
which means that di(p,q) > 0 for p # g € M.
In summary, we have the following theorem, which is a generalization of the
theorem of Kobayashi [6] on the hyperbolicity criterion for almost Hermitian
manifolds to Rizza manifolds.

Theorem 5.2 (Main Theorem). If (M, J, L) is a Rizza manifold whose holo-
morphic sectional curvature K is bounded above by —1, then M is hyperbolic.
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