• Title/Summary/Keyword: Methane/Air

Search Result 418, Processing Time 0.027 seconds

Anaerobic Biotreatment of Animal Manure - A review of current knowledge and direction for future research -

  • Hong, Jihyung
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Anaerobic decomposition is one of the most common processes in nature and has been extensively used in waste and wastewater treatment for several centuries. New applications and system modifications continue to be adapted making the process either more effective, less expensive, or suited to the particular waste in question and the operation to which it is to be applied. Animal manure is a highly biodegradable organic material and will naturally undergo anaerobic fermentation, resulting in release of noxious odors, such as in manure storage pits. Depending on the presence or absence of oxygen in the manure, biological treatment process may be either aerobic or anaerobic. Under anaerobic conditions, bacteria carry on fermentative metabolisms to break down the complex organic substances into simpler organic acids and then convert them to ultimately formed methane and carbon dioxide. Anaerobic biological systems for animal manure treatment include anaerobic lagoons and anaerobic digesters. Methane and carbon dioxide are the principal end products of controlled anaerobic digestion. These two gases are collectively called biogas. The biogas contains $60\~70\%$ methane and can be used directly as a fuel for heating or electrical power generation. Trace amounts of ammonia and hydrogen sulfide ($100\~300\;ppm$) are always present in the biogas stream. Anaerobic lagoons have found widespread application in the treatment of animal manure because of their low initial costs, ease of operation and convenience of loading by gravity flow from the animal buildings. The main disadvantage is the release of odors from the open surfaces of the lagoons, especially during the spring warm-up or if the lagoons are overloaded. However, if the lagoons are covered and gases are collected, the odor problems can be solved and the methane collected can be used as a fuel. Anaerobic digesters are air-tight, enclosed vessels and are used to digest manure in a well-controlled environment, thus resulting in higher digestion rates and smaller space requirements than anaerobic lagoons. Anaerobic digesters are usually heated and mixed to maximize treatment efficiency and biogas production. The objective of this work was to review a current anaerobic biological treatment of animal manure for effective new technologies in the future.

  • PDF

Effect of the Obstacles on Explosion Pressure and Propagation Velocity in Closed Tube (밀폐배관 내의 장애물에 의한 폭발압력과 화염전파속도의 영향)

  • Han, Ou-Sup;Lee, Jung-Suk
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2020
  • In this study, experimental study was conducted to examine the influence of explosion pressure and flame propagation velocity of methane-air mixtures due to the obstacles placed in the explosion space. We used the quantified parameter named barrier ratio in order to generalize the effect of explosion pressure and flame propagation velocity in the closed explosion space with obstacles. From experimental observations, the explosion pressure and flame propagation velocity regardless of the number of obstacles increased with barrier ratio. In the same methane concentration of 10% methane, the flame propagation velocity without obstacle (barrier ratio = 0) was 3.46 m/s but 24.24 m/s (increase about 7 times) with 3 obstacle and barrier ratio of 0.98. In the same barrier ratio, explosion pressure and flame propagation velocity increased sharply with increasing of the number of obstacles.

The Study of Effects of Variable Parameters on Flame Structure and NOx Emission in Methane/Air Laminar Partially Premixed Flames (메탄/공기 층류 부분 예혼합화염에서 예혼합 정도에 따른 화염구조와 질소산화물의 배출에 미치는 영향에 관한 연구)

  • Oh, Jeong-Seog;Jeong, Yong-Ki;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.362-367
    • /
    • 2003
  • It is shown that the effect of variable parameters on flame structures and NOx emissions in the laminar partially premixed methane-air flames with a co-axial Bunsen burner. Objectives of this paper is to understand the effects of flow variables on NOx emissions and the flame structure with OH chemiluminescence, including reconstructed image by abel inversion processing at each conditions. A fuel flowrate of 200 [cc/min] was fixed and the amount of air was varied from 400 to 1200 [cc/min]. The experimental variables were equivalence ratio(${\Phi}$ fuel split percentage(${\sigma}$ and inner tube recess(x/D). Flow conditions were ranged from $1.36{\sim}4.76$(equivalence ratio), $50{\sim}100$(fuel split percentage) and $0{\sim}20$(inner tube recess). NOx analyzer and ICCD camera with a OH filter were used as a main experimental apparatus. In addition, Abel inversion, which is a kind of tomography and valuable to estimate a two-dimensional structure of co-axial flames from cubical information, was employed for combustion diagnostics. Results from this study indicate that the main effects depend on equivalence ratio and next sigma, x/D for NOx production and OH formation. Throughout Abel inversion, we could affirm the maximum position and the tendency of OH radical intensity by variants at five axial heights above the burner exit.

  • PDF

Life Cycle Assessment of Rural Community Buildings Using OpenLCATM DB (OpenLCATM DB를 이용한 농촌 공동체 건축물 전과정평가)

  • Kim, Yongmin;Lee, Byungjoon;Yoon, Seongsoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.97-105
    • /
    • 2021
  • Most of the rural development projects for the welfare of residents are mainly new construction and remodeling projects for community buildings such as village halls and senior citizens. However, in the case of the construction industry, it has been studied that 23% of the total carbon dioxide emissions generated in Korea are generated in the building-related sector. (GGIC, 2015) In order to reduce the emission of environmental pollutants resulting from construction of rural community buildings, there is a need to establish a system for rural buildings by predicting the environmental impact. As a result of this study, the emissions of air pollutants from buildings in rural communities were analyzed by dividing into seven stages: material production, construction, operation, maintenance, demolition, recycling, and transportation activities related to disposal. As a result, 12 kg of carbon dioxide (CO), 0.06 kg of carbon monoxide (CO), 0.02 kg of methane (CH), 0.04 kg of nitrogen oxides (NO), 0.02 kg of sulfurous acid gas (SO), and non-methane volatile organics per 1m of buildings in rural communities It was analyzed that 0.02 kg of compound (NMVOC) and 0.00011 kg of nitrous oxide (NO) were released. This study proved that environmentally friendly design is possible with a quantitative methodology for the comparison of operating energy and air pollutant emissions through the design specification change based on the statement of the rural community building. It is considered that it can function as basic data for further research by collecting major structural changes and materials of rural community buildings.

Measurements of Greenhouse Gas from the Manure in the Piggery (축산 돈사에서 온실가스 측정 방법에 대한 연구)

  • Kam, D.H.;Park, K.H.;Choi, D.Y.;Jung, M.S.;Min, B.R.;Lee, D.W.;Kim, J.K.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.3
    • /
    • pp.155-162
    • /
    • 2011
  • This study was conducted to suggest the measurement procedure and to build up national greenhouse gas inventory database of animal agricultural sector by assessing methane and nitrous oxide emissions according to IPCC guidelines for national greenhouse gas inventory report in order to correspond to the Climate Change Convention. Ten house-made steady-state Half dome floating chambers were used to collect air samples emitted from slurry stored in the pit under the slat. Those chambers were spread out in order that air samples might represent the whole area of slurry under the slat. Fresh air was pumped into the chambers by $5{\sim}9{\ell}/min$ and air inside the chambers was sampled by $1{\ell}/min$. Surplus air by the higher flow rate of fresh air than sampling flow rate was passed through a hole on the top of chambers. Nitrous oxide fluxes measured from 10 locations would be negligible as concentrations between background air and sampled air from the chambers were within the error range. However, mean $CH_4$ fluxes were $0.15{\sim}1.02mg/m^2{\cdot}s$. The application of continuous greenhouse gas measurement techniques would be preferred if the patterns of greenhouse gas emissions are considered.

The Effect of Particle Size on Ignition Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek
    • Journal of Energy Engineering
    • /
    • v.2 no.3
    • /
    • pp.285-292
    • /
    • 1993
  • A cylindrical-shape, horizontal furnace was used to investigate the effect of particle size on the pulverized coal combustion behavior. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Ignition characteristics of pulverized coal flame were determined through the amount of methane in the carrier gas for the self-sustaining flame. Easiest ignition occurred with the immediately-sized coal particles. Ignition of coal jet flame appeared to occur through a gas-phase homogeneous process for particles larger than 30 microns. Below this limiting size, heterogeneous process probably dominated ignition of coal flame. Oxygen concentration of combustion air was varied up to 50%, to determine the oxygen-enrichment effect on the coal ignition behavior. Oxygen enrichment of primary air assisted ignition behavior of pulverized coal flame. However, enrichment of secondary air didn't produce any effect on the ignition behavior.

  • PDF

The Influence of $C_2HCl_3$ on the $CH_4/Air$ Counterflow Nonpremixed Flames (메탄/공기 대향류 비예혼합화염에서 $C_2HCl_3$의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.41-50
    • /
    • 1998
  • Numerical simulations of nonpremixed $CH_4/C_2HCl_3$(Trichloroethylene, TCE)/Air flames are conducted at atmospheric pressure in order to understand the effect of hydrocabon bound chlorine on methane/air flames. A chemical kinetic mechanism is employed, the adopted scheme involving 48 gas-phase species and 445 elementray reaction steps containing 223 backward reactions. The calculated temperature, velocity, and critical strain rate are compared with the experiments for the flame (16.1% TCE by Vol.) estabilished at a strain rate of $175s^{-1}$. Whereas there is overall good agreement between predictions and the measurements, it appears that the critical strain rate is higher than measured, and some areas of further refinement in the kinetic mechanism are required.

  • PDF

A Numerical Analysis of the Characteristics with High Temperature Air Combustion in Counterflow Diffusion Flame (대향류 확산화염의 고온공기 연소특성에 관한 수치해석)

  • Cho, Eun Seong;Kobayashi, Hideaki;Chung, Suk Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.9-14
    • /
    • 2003
  • High temperature air combustion technology has been utilized by using preheated air over 1100 K and excessive exhaust gas recirculation. Numerical analysis was performed to investigate the combustion characteristics with high temperature deficient oxygen air combustion by adopting a counterflow as a model problem accounting for detailed chemical kinetics. Methane($CH_4$) was used as a test fuel and calculated oxidizer conditions were low temperature high oxygen (300K, $X_{O2}=0.21$) and high temperature low oxygen (1300K, $X_{O2}=0.04$) conditions. The latter case showed that the flame temperature is lower than the former case and its profile showed monotonic decrease from oxidizer to fuel side, without having local maximum flame temperature at high stretch rate. Also, heat release rate was one order lower and it has one peak profile because of low oxygen concentration and heat release rate integral is almost same for stretch rate. High temperature low oxygen air combustion shows low NO emission characteristics.

  • PDF

A Study on Downstream Interaction between Methane-air and Syngas-air Premixed Flames (메탄-공기/합성가스-공기 예혼합화염의 후류 상호 작용에 대한 연구)

  • Park, Jeong;Kwon, Oh Boong;Keel, Sang-In;Yun, Jin-Han
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.8-17
    • /
    • 2016
  • Downstream interactions between lean premixed flames with mutually different fuels of syngas and $CH_4$ have been numerically investigated particularly on and near lean extinction limits. The interaction characteristics between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames were shown to be quite different from those between the same hydrocarbon flames. The lean extinction boundaries were of slanted shape, thereby implying strong interactions. The weaker flames had negative flame speeds on the upper extinction boundaries, whereas the weaker flame speeds on the lower extinction boundaries were both negative and positive. The results also showed that the flame interaction characteristics did not follow the general tendency with the dependency of Lewis number in downstream interactions between the same hydrocarbon flames. Importance of chemical interaction in flame characteristics is discussed in the downstream interactions between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames.

Effect of the Degree of Fuel-Air Mixing and Equivalence Ratio on the NOx Emission and Heat Release in a Dump Combustor (모형연소기에서 연료-공기의 혼합정도 및 당량비가 NOx 배출과 열 방출량에 미치는 영향에 대한 연구)

  • Cho, Bong-Kug;Choi, Do-Wook;Kim, Gyu-Bo;Chang, Young-June;Song, Ju-Hun;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.658-665
    • /
    • 2009
  • Lean premixed combustors are used for significant NOx reduction which one of issues in current gas turbine combustor. This study was investigated to estimate the effects of the unmixedness of fuel-air, equivalence ratio on the instability mechanism, NOx emission and combustion oscillation in a lean premixed combustor. The experiments were conducted in a dump combustor at atmospheric pressure conditions using methane as fuel. The swirler angle was $45^{\circ}$, the degrees of fuel-air mixing were 0, 50 and 100 and inlet temperature was 650K. The equivalence ratio was ranging from 0.5 to 0.8. This paper shows that NOx emission was increased when the degree of fuel-air mixing is increased in same equivalence ratio and when equivalence ratio is increased. And the range of the combustion instability was enlarged as a function of increasing of the degree of fuel-air mixing.