DOI QR코드

DOI QR Code

Effect of the Obstacles on Explosion Pressure and Propagation Velocity in Closed Tube

밀폐배관 내의 장애물에 의한 폭발압력과 화염전파속도의 영향

  • Han, Ou-Sup (Occupational Safety & Health Research Institute, KOSHA) ;
  • Lee, Jung-Suk (Occupational Safety & Health Research Institute, KOSHA)
  • 한우섭 (한국산업안전보건공단 산업안전보건연구원) ;
  • 이정석 (한국산업안전보건공단 산업안전보건연구원)
  • Received : 2020.04.22
  • Accepted : 2020.06.10
  • Published : 2020.06.30

Abstract

In this study, experimental study was conducted to examine the influence of explosion pressure and flame propagation velocity of methane-air mixtures due to the obstacles placed in the explosion space. We used the quantified parameter named barrier ratio in order to generalize the effect of explosion pressure and flame propagation velocity in the closed explosion space with obstacles. From experimental observations, the explosion pressure and flame propagation velocity regardless of the number of obstacles increased with barrier ratio. In the same methane concentration of 10% methane, the flame propagation velocity without obstacle (barrier ratio = 0) was 3.46 m/s but 24.24 m/s (increase about 7 times) with 3 obstacle and barrier ratio of 0.98. In the same barrier ratio, explosion pressure and flame propagation velocity increased sharply with increasing of the number of obstacles.

본 연구에서는 폭발 공간에 존재하는 장애물에 의한 메탄-공기 혼합기의 폭발압력 및 화염전파속도의 영향을 조사하기 위해 실험적 조사를 수행하였다. 밀폐된 폭발 공간에서의 폭발압력 및 화염전파속도에 대한 장애물의 영향을 일반화하기 위해서 장애율이라고 하는 정량화된 파라메타를 사용하였다. 실험 결과 장애물 개수에 관계없이 장애율이 증가할수록 폭발압력과 화염전파속도가 증가하였다. 또한 10 % 메탄가스의 동일한 농도조건에서, 장애물이 없는 경우(장애율 = 0)의 화염전파속도는 3.46 m / s가 얻어졌으며, 장애물 3개 및 장애율 0.98 인 경우는 24.24 m / s로서 약 7 배가 증가하였다. 동일한 장애율에서는 장애물 개수가 증가할수록 폭발압력 및 화염전파속도가 급격히 증가하였다.

Keywords

References

  1. Database for Major industrial accidents, Korea Occupational Safety and Health Agency, (1988-2019)
  2. AIChE, "Guidelines for Consequence Analysis of Chemical Releases", (2000)
  3. Han, J.B., Lee, Y.S., Park. D.J., "Measurements on Effects of Locations of Obstacles in an Explosion Chamber", KIGAS, 12(3), 68-74, (2008)
  4. Starke, R., and P. Roth, "An Experimental Investigation of Flame Behaviour During Explo- sions in Cylindrical Enclosures with Obstacles", Combust. Flame., 75(2), 111-121, (1989) https://doi.org/10.1016/0010-2180(89)90090-4
  5. K.H. Oh, H. Kim, J.B. Kim, S.E. Lee, "A study on the obstacle- induced variation of the gas explosion characteristics", J. Loss Prev. in the Process Ind., 14, 597-602, (2001) https://doi.org/10.1016/S0950-4230(01)00054-7
  6. Kindracki, J., Kobiera, A., Rarata, G., Wolanski, P., "Influence of Ignition Position and Obstacles on Explosion Development in Methane-air Mixture in Closed Vessels", J. Loss Prev. in the Process Ind., 20, 551-561, (2007) https://doi.org/10.1016/j.jlp.2007.05.010
  7. Yang, Y., Xueqiu H., Geng, L., Wang H., "Effect of Mesh Obstacle on Methane Gas Explosion", International Symposium on Mine Safety Science and Engineering, 26, 70-74, (2011)
  8. Abdulmajid M., Nainna, Herodotos N. Phylaktou, Gordon E. Andrews, "The acceleration of flames in tube explosions with two obstacles as a function of the obstacle separation distance", J. Loss Prev. in the Process Ind., 26, 1597-1603, (2013) https://doi.org/10.1016/j.jlp.2013.08.003
  9. Nainna, A.M., Somuano, G.B., Phylaktou, H.N., Andrews, G.E., "Flame Acceleration in Tube Explosions with up to Three Flat-bar Obstacles with Variable Obstacle Separation Distance", J. Loss Prev. in the Process Ind., 38, 119-124, (2015) https://doi.org/10.1016/j.jlp.2015.08.009
  10. Xiaoping, W., Minggao, Y., Wentao, J., Meng, Y., Junjie, C., "Methane-air explosion characteristics with Different Obstacle Configurations", International Journal of Mining Science and Technology, 25, 213-218, (2018) https://doi.org/10.1016/j.ijmst.2015.02.008
  11. Shaojie W., Minggao Y., Kai Z., Yongliang X., Zhuang Y., Chunyan W., H.N., Andrews, G.E., "Influence of obstacle blockage on methane/air explosion characteristics affected by side venting in a duct", J. Loss Prev. in the Process Ind., 54, 281-288 ,(2018) https://doi.org/10.1016/j.jlp.2018.05.003
  12. Zhang, K., Wang, Z., Cui, L., Zhen, Y., Cui, Y., "Effect of one Obstacle on Methane-air Explosion in Linked Vessels", Process Safety and Environmental Protection, 105, 217-223, (2017) https://doi.org/10.1016/j.psep.2016.11.004
  13. Li, R., Malalasekera, W., Ibrahim, S., Liu, B., "On the Mechanism of Pressure Rise in Vented Explosions: A Numerical Study", Process Safety and Environmental Protection, 117, 551-564, (2017) https://doi.org/10.1016/j.psep.2018.05.026