DOI QR코드

DOI QR Code

A Study on Downstream Interaction between Methane-air and Syngas-air Premixed Flames

메탄-공기/합성가스-공기 예혼합화염의 후류 상호 작용에 대한 연구

  • Park, Jeong (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Kwon, Oh Boong (Dept. of Mechanical Engineering, Pukyoung Nat'l Univ.) ;
  • Keel, Sang-In (Environment & Energy Research Division, Korea Institute of Machinery and Materials) ;
  • Yun, Jin-Han (Environment & Energy Research Division, Korea Institute of Machinery and Materials)
  • 박정 (부경대학교 기계공학과) ;
  • 권오붕 (부경대학교 기계공학과) ;
  • 길상인 (한국기계연구원 환경 에너지 기계 시스템) ;
  • 윤진한 (한국기계연구원 환경 에너지 기계 시스템)
  • Received : 2015.09.08
  • Accepted : 2015.12.16
  • Published : 2016.03.30

Abstract

Downstream interactions between lean premixed flames with mutually different fuels of syngas and $CH_4$ have been numerically investigated particularly on and near lean extinction limits. The interaction characteristics between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames were shown to be quite different from those between the same hydrocarbon flames. The lean extinction boundaries were of slanted shape, thereby implying strong interactions. The weaker flames had negative flame speeds on the upper extinction boundaries, whereas the weaker flame speeds on the lower extinction boundaries were both negative and positive. The results also showed that the flame interaction characteristics did not follow the general tendency with the dependency of Lewis number in downstream interactions between the same hydrocarbon flames. Importance of chemical interaction in flame characteristics is discussed in the downstream interactions between lean premixed (50% $H_2$ + 50% CO)-air and $CH_4$-air flames.

Keywords

References

  1. N. Peters, Laminar diffusion flamelet models in nonpremixed turbulent combustion, Prog. Energy Combust. Sci., 10 (1984) 319-339. https://doi.org/10.1016/0360-1285(84)90114-X
  2. N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst., 21 (1986) 1231- 1250.
  3. S. Ishizuka, C.K. Law, An experimental study on extinction and stability of stretched premixed flames, Proc. Combust. Inst., 19 (1982) 327-335.
  4. S.H. Sohrab, Z.Y. Ye, C.K. Law, An experimental investigation on flame interaction and the existence of negative flame speeds, Proc. Combust. Inst., 20 (1984) 1957-1965.
  5. S.H. Sohrab, Z.Y. Ye, C.K. Law, Theory of interactive combustion of counterflow premixed flames, Combust. Sci. Technol., 45 (1986) 27. https://doi.org/10.1080/00102208608923840
  6. S.H. Chung, J.S. Kim JS, C.K. Law, Extinction of interacting premixed flames: theory and experimental comparisons. Proc. Combust. Inst., 21 (1986) 1845-1851.
  7. J.S. Ha, C.W. Moon, J. Park, J.S. Kim, J.H. Yun, S.I. Keel, A study on flame interaction between methane-air and nitrogen -diluted hydrogen-air premixed flames, Int. J. Hydrogen Energy, 35 (2010) 6992-7001. https://doi.org/10.1016/j.ijhydene.2010.04.104
  8. C.G. Fotache, Y. Tan, C.J. Sung, C.K. Law, Ignition of $CO/H_2/N_2$ versus heated air in counterflow: experimental and modeling results, Combust. Flame, 120 (2000) 417-426. https://doi.org/10.1016/S0010-2180(99)00098-X
  9. C.M. Vagelopoupos, F.N. Egolfpoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air, Proc. Combust. Inst., 25 (1994) 1317-1323.
  10. I.C. Mclean, D.B. Smith, S.C. Taylor, The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction, Proc. Combust. Inst., 25 (1994) 749-757.
  11. M.J. Brown, I.C. Mclean, D.B. Smith, S.C. Taylor, Markstein lengths of $CO/H_2/air$ flames using expanding spherical flames, Proc. Combust. Inst., 26 (1996) 875-881.
  12. J. Natarajan, T. Lieuwen, J. Seitzman, Laminar flame speeds of $H_2/CO$ mixture effects of $CO_2$ dilution, preheat temperature, and pressure. Combust. Flame, 151 (2007) 104-109. https://doi.org/10.1016/j.combustflame.2007.05.003
  13. T.M. Vu, J. Park, O.B. Kwon, J.S. Kim, Effects of hydrocarbon addition on cellular instabilities in expanding syngaseair spherical premixed flames, Int J Hydrogen Energy, 34 (2009) 6961-6969. https://doi.org/10.1016/j.ijhydene.2009.06.067
  14. S.G. Davis, A.V. Joshi, H. Wang, F. Egolfopoulos, An optimized kinetic model of $H_2/CO$ combustion, Proc. Combust. Inst., 30 (2005) 1283-1292. https://doi.org/10.1016/j.proci.2004.08.252
  15. G. Yu, C.K. Law, C.K. Wu, Laminar flame speeds of hydrocarbon-air mixtures with hydrogen addition, Combust. Flame, 63 (1986) 339-347. https://doi.org/10.1016/0010-2180(86)90003-9
  16. P. Dagat, A. Nicolle, Experimental and detailed kinetic modeling of hydrogen-enriched natural gas blend oxidation over extended temperature and equivalence ratio ranges, Proc. Combust. Inst., 30 (2005) 2631-2638.
  17. V. Di Sarli, A. Di Benedetto, Laminar burning velocity of hydrogenemethane/air premixed flames. Int. J. Hydrogen Energy, 32 (2007) 637-646. https://doi.org/10.1016/j.ijhydene.2006.05.016
  18. J.S. Kim, J. Park, O.B. Kwon, E.J. Lee, J.H. Yun, S.I. Keel, Preferential diffusion effects in opposedflow diffusion flame with blended fuels of $CH_4$ and $H_2$, Int. J. Hydrogen Energy, 33 (2008) 842- 850.
  19. J. Wang, Z. Huang, C. Tang, H. Miao, X. Wang, Numerical study of the effects of hydrogen addition on methane-air mixtures combustion, Int. J. Hydrogen Energy, 34 (2009) 1084-1096. https://doi.org/10.1016/j.ijhydene.2008.11.010
  20. E. Hu, Z. Huang, J. He, C. Jin, J. Zheng, Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames, Int. J. Hydrogen Energy, 34 (2009) 4876- 4888. https://doi.org/10.1016/j.ijhydene.2009.03.058
  21. C.M. Vagelopoupos, F.N. Egolfpoulos, Laminar flame speeds and extinction strain rates of mixtures of carbon monoxide with hydrogen, methane, and air, Proc. Combust. Inst., 25 (1994) 1317-1323.
  22. R.J Kee, J.A. Miller, G.H. Evans, G. Dixon-Lewis, A computational model of the structure and extinction of strained, opposed flow, premixed methaneair flame. Proc. Combust. Inst., 22 (1988) 1479- 1494.
  23. A.E. Lutz, R.J. KeeJ, J.F. Grcar, F.M. Rupley, A fortran program for computing opposed-flow diffusion flames. Sandia National Laboratories Report, 1997, SAND 96-8243.
  24. Y. Ju, H. Guo, K. Maruta, F. Liu, On the extinction limit and flammability limit of non-adiabatic stretched methane-air premixed flames. J. Fluid Mech., 342 (1997) 315. https://doi.org/10.1017/S0022112097005636
  25. R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin II: a fortran chemical kinetics package for analysis of gas phase chemical kinetics. Sandia National Laboratories Report, 1989, SAND 89-8009B.
  26. R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A fortran computer code package for the evaluation of gas phase multi-component transport. Sandia National Laboratories Report, 1994, SAND 86-8246.
  27. H. Sun, S.I. Yang, G. Jomaas, C.K. Law, Highpressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion. Proc. Combust. Inst., 31 (2007) 439-446. https://doi.org/10.1016/j.proci.2006.07.193
  28. S.G. Davis, A.V. Joshi, H. Wang, F. Egolfopoulos, An optimized kinetic model of $H_2/CO$ combustion. Proc. Combust. Inst., 30 (2005) 1283-1292.
  29. J. Park J, D.S. Bae, M.S. Cha, J.H. Yun, S.I. Keel, H.C. Cho, K.T. Kim, Ha JS. Flame characteristics in $H_2/CO$ synthetic gas diffusion flame diluted with $CO_2$: effects of flame radiation and mixture composition. Int. J. Hydrogen Energy, 33 (2008) 7256-7264. https://doi.org/10.1016/j.ijhydene.2008.07.063
  30. G.P. Smith GP, D.M. Golden, N.W. Frenklach, M.B. Eiteneer, M. Goldenberg, C.T. Bowman, R. K. Hanson, S. Dong, W.C. Gardiner, Jr. V.V. Lissianski, Z. Qin, Available from: http://www.me.Berkeley.edu/gri_mech.
  31. R. Addabbo, J.K. Bechtold, M. Matalon, Wrinkling of spherically expanding flames, Proc. Combust. Inst., 29 (2002) 1527-35.