• Title/Summary/Keyword: Meteorological condition

검색결과 487건 처리시간 0.026초

WRF-UCM을 활용한 수도권 지역의 열환경 변화 연구: 2000년과 2009년의 비교 (Study on Heat Environment Changes in Seoul Metropolitan Area Using WRF-UCM: A Comparison between 2000 and 2009)

  • 이보라;이대근;남경엽;이영곤;김백조
    • 대기
    • /
    • 제25권3호
    • /
    • pp.483-499
    • /
    • 2015
  • This study examined the impact of change of land-use and meteorological condition due to urbanization on heat environment in Seoul metropolitan area over a decade (2000 and 2009) using Weather Research and Forecasting (WRF)-Urban Canopy Model (UCM). The numerical simulations consist of three sets: meteorological conditions of (1) October 2000 with land-use data in 2000 (base simulation), (2) October 2009 with land-use data in 2000 (meteorological condition change effect) and (3) October 2009 with land-use data in 2009 (both the effects of land-use and meteorological condition change). According to the experiment results, the change of land-use and meteorological condition by urbanization over a decade showed different contribution to the change of heat environment in Seoul metropolitan area. There was about $1^{\circ}C$ increase in near-surface (2 m) temperature over all of the analyzed stations due to meteorological condition change. In stations where the land-use type changed into urban, large temperature increase at nighttime was observed by combined effects of meteorological condition and land-use changes (maximum $4.23^{\circ}C$). Urban heat island (UHI) over $3^{\circ}C$ (temperature difference between Seoul and Okcheon) increased 5.24% due to the meteorological condition change and 26.61% due to the land-use change. That is, land-use change turned out to be contributing to the strengthening of UHI more than the meteorological condition change. Moreover, the land-use change plays a major role in the increase of sensible heat flux and decrease of latent heat flux.

기상조건에 따른 부산지역 대기오염물질 농도변화와 예측에 관한 연구 (On the Prediction and Variation of Air Pollutants Concentration in Relation to the Meteorological Condition in Pusan Area)

  • 정영진;이동인
    • 한국대기환경학회지
    • /
    • 제14권3호
    • /
    • pp.177-190
    • /
    • 1998
  • The concentrations of air pollutants In large cities such as Pusan area have been increased every year due to the increasing of fuels consumption at factories and by vehicles as well as the gravitation of the population. In addition to the pollution sources, time and spatial variation of air pollutants concentration and meteorological factors have a great influence on the air pollution problem. Especially , its concentration is governed by wind direction, wind speed, precipitation, solar radiation, temperature, humidity and cloud amounts, etc. In this study, we have analyzed various data of meteorological factors using typical patterns of the air pressure to investigate how the concentration of air pollutants is varied with meteorological condition. Using the relationship between meteorological factors (air temperature, relative humidity, wind speed and solar radiation) and the concentration of air pollutants (SO2, O3) , experimental prediction formulas for their concentration were obtained. Therefore, these prediction formulas at each meteorological factor in a pressure pattern may be roughly used to predict the air pollutants concentration and contributed to estimate the variation of its value according to the weather condition in Pusan city.

  • PDF

서울지역 미세먼지 고농도에 따른 천식사망자 사례일의 종관기상학적 분류 (Synoptic Meteorological Classification of the Days on Which Asthma Deaths Occurred Due to High PM10 Concentrations in Seoul)

  • 최윤정;박종길;정우식
    • 한국환경과학회지
    • /
    • 제26권2호
    • /
    • pp.159-172
    • /
    • 2017
  • Asthma deaths in Seoul peaked on the third, fifth, and second days after the PM concentration exceeded the daily average concentration standard. We classified the synoptic meteorological conditions, based on the days involving such cases, into three categories. Type 1 included the meteorological condition likely to cause high air pollution concentrations in the leeward region, the dominant wind direction of which is the northwest. Type 2 included the meteorological condition likely to cause high air pollution concentrations due to the weak wind velocity under stable atmospheric conditions. Type 3 was when the passage low atmospheric pressure and the expansion of high atmospheric pressure occurred at the rear, indicating a meteorological condition likely to cause high air pollution, in certain regions. Type 1 occurred 11 times, with high concentrations of over $100{\mu}g/m^3$ being observed in the southeastern part of Seoul. Type 2 occurred 24 times, often accompanied by a PM concentration of $100{\sim}400{\mu}g/m^3$. Type 3 occurred 11 times, and was accompanied by several days of yellow dust that accounted for the highest concentrations.

연무와 연관된 동아시아의 종관기상 특성 (Characteristics of East Asia Synoptic Meteorological Conditions in Association with Haze phenomena)

  • 조현영;김철희
    • 대기
    • /
    • 제20권2호
    • /
    • pp.161-172
    • /
    • 2010
  • In an effort to investigate the characteristics of synoptic meteorological conditions in association with long-range transport of haze phenomena occurred over Korea, we statistically classified characteristics of haze events into two types of haze: stagnant case and long-range transport case, based on the synoptic meteorological parameters, and analyze comparatively the characteristics of synoptic meteorological conditions for each case. The results showed that the occurrence frequency of stagnant case accounts for 64.5%, showing superiority of stagnant haze cases over the long-range transport case which occupies only 35.5% among total 67 cases for the period from 2000 to 2007. This result indicates that haze phenomena occurred over Korea has influenced by not only the emission in Korea by itself but long range transport effects originating from China inland. The synoptic condition on 850hPa level showed that, when stagnant case occurred, Korean peninsula was located under the effects of negative vorticity with the significantly weak wind speed and stable atmospheric condition. In contrast, long-range transport case shows positive vorticity and relatively strong wind speed over 850hPa level, especially with the location of high pressure system over the area of southwestern China. This location of high pressure system implies to induce the westerlies or northwesteries consistently due to its pressure gradient by itself. Also other comparative studies haze days (vs.) Asian dust days are carried out, and we found out that the patterns of long-range transport of haze phenomena in Korea shows similar to Asian dust case but the static stability condition indicates more stabilized atmospheric condition than dust phenomena.

원격탐사자료를 활용한 기상학적 가뭄 시 식생의 생태학적 가뭄 상태 모니터링 (Monitoring the Ecological Drought Condition of Vegetation during Meteorological Drought Using Remote Sensing Data)

  • 원정은;정하은;강신욱;김상단
    • 대한원격탐사학회지
    • /
    • 제38권5_3호
    • /
    • pp.887-899
    • /
    • 2022
  • 기상학적 요인에 의해 발생하는 가뭄은 육상 생태계의 식생에 부정적인 영향을 미친다. 본 연구에서는 기상학적 가뭄이 식생에 영향을 미치는 상태를 식생의 생태가뭄으로 정의하고, 영향 정도를 정량적으로 감시하기 위한 식생의 생태가뭄 상태지수(ecological drought condition index of vegetation, EDCI-veg)를 제안하였다. EDCI-veg는 식생과 기상학적 가뭄 정보 사이의 copula 기반의 이변량 결합확률모델로부터 도출되며, 가뭄이 발생했을 때 현재의 식생 상태가 가뭄으로 인해 얼마나 영향을 받았는지를 수치로 표현할 수 있다. 과거의 기상학적 가뭄 사상과 그에 대응하는 식생 상태를 비교하여 제안된 지수를 살펴본 결과, EDCI-veg는 식생의 생태가뭄을 적절하게 모니터링할 수 있음이 확인되었다. 또한, 원격탐사자료를 활용하여 고해상도의 가뭄 지도를 작성함으로써 생태가뭄 상태를 공간적으로 식별할 수 있었다.

통합모델의 초기 자료에 대한 예측 민감도 산출 도구 개발 (Development of Tools for calculating Forecast Sensitivities to the Initial Condition in the Korea Meteorological Administration (KMA) Unified Model (UM))

  • 김성민;김현미;주상원;신현철;원덕진
    • 대기
    • /
    • 제21권2호
    • /
    • pp.163-172
    • /
    • 2011
  • Numerical forecasting depends on the initial condition error strongly because numerical model is a chaotic system. To calculate the sensitivity of some forecast aspects to the initial condition in the Korea Meteorological Administration (KMA) Unified Model (UM) which is originated from United Kingdom (UK) Meteorological Office (MO), an algorithm to calculate adjoint sensitivities is developed by modifying the adjoint perturbation forecast model in the KMA UM. Then the new algorithm is used to calculate adjoint sensitivity distributions for typhoon DIANMU (201004). Major initial adjoint sensitivities calculated for the 48 h forecast error are located horizontally in the rear right quadrant relative to the typhoon motion, which is related with the inflow regions of the environmental flow into the typhoon, similar to the sensitive structures in the previous studies. Because of the upward wave energy propagation, the major sensitivities at the initial time located in the low to mid- troposphere propagate upward to the upper troposphere where the maximum of the forecast error is located. The kinetic energy is dominant for both the initial adjoint sensitivity and forecast error of the typhoon DIANMU. The horizontal and vertical energy distributions of the adjoint sensitivity for the typhoon DIANMU are consistent with those for other typhoons using other models, indicating that the tools for calculating the adjoint sensitivity in the KMA UM is credible.

한반도 해양환경에 따른 적외선 신호 민감도 해석연구 (A Study on the Sensitivity of IR Signature of a Ship according to the Meteorological Environment of Korean Seas)

  • 조용진;유재문
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.679-685
    • /
    • 2005
  • Until now, the stealth design to reduce the infrared signature of ship haven't been carried out using the proper design criteria. The study on the maritime meteorological environment in the Korean seas hasn't been accomplished yet, so the design criteria of the maritime meteorological environment was just given by the engineering sense without experience of the Navy and/or of the shipyard. Even in rather good conditions(summer condition), the estimated IR signature of a ship showed larger values and couldn't predict the worst condition during the operation of a ship at sea. In this study, domestic maritime meteorological data were collected and variables affecting the IR signature of a ship had been derived through the sensitivity study of IR signature according to the maritime meteorological environment in Korean seas. The basic study on the criteria of the stealth design of IR signature has been carried out.

전지구 예보모델의 대기-해양 약한 결합자료동화 활용성에 대한 연구 (Application of Weakly Coupled Data Assimilation in Global NWP System)

  • 윤현진;박혜선;김범수;박정현;임정옥;부경온;강현석
    • 대기
    • /
    • 제29권2호
    • /
    • pp.219-226
    • /
    • 2019
  • Generally, the weather forecast system has been run using prescribed ocean condition. As it is widely known that coupling between atmosphere and ocean process produces consistent initial condition at all-time scales to improve forecast skill, there are many trials on the application of data assimilation of coupled model. In this study, we implemented a weakly coupled data assimilation (short for WCDA) system in global NWP model with low horizontal resolution for coupled forecast with uncoupled initialization, following WCDA system at the Met Office. The experiment is carried out for a typhoon evolution forecast in 2017. Air-sea exchange process provides SST cooling and gives a substantial impact on tendency of central pressure changes in the decaying phase of the typhoon, except the underestimated central pressure. Coupled data assimilation is a challenging new area, requiring further work, but it would offer the potential for improving air-sea feedback process on NWP timescales and finally contributing forecast accuracy.

인공강우 항공실험을 위한 한반도 기상조건의 예비결과 (Meteorological Conditions for the Cloud Seeding Experiment by Aircraft in Korea)

  • 정운선;장기호;고아름;구정모;노용훈;채상희;차주완;이철규
    • 한국환경과학회지
    • /
    • 제30권12호
    • /
    • pp.1027-1039
    • /
    • 2021
  • In this study, we investigated the optimal meteorological conditions for cloud seeding using aircraft over the Korean Peninsula. The weather conditions were analyzed using various data sources such as a weather chart, upper air observation, aircraft observation, and a numerical model for cloud seeding experiments conducted from 2018 to 2019 by the National Institute of Meteorological Sciences, Korea Meteorological Administration. Cloud seeding experiments were performed in the seasons of autumn (37.0%) and winter (40.7%) in the West Sea and Gangwon-do. Silver iodide (70.4%) and calcium chloride (29.6%) were used as cloud seeding materials for the experiments. The cloud seeding experiments used silver iodide in cold clouds. Aircraft observation revealed relatively low temperatures, low liquid water content, and strong wind speeds in clouds with a weak updraft. In warm clouds, the cloud seeding experiments used calcium chloride. Observations included relatively high temperatures, high liquid water content, and weak wind speeds in clouds with a weak updraft. Based upon these results, we determined the comprehensive meteorological conditions for cloud seeding experiments using aircraft over the Korean Peninsula. The understanding of optimal weather conditions for cloud seeding gained from this study provide information critical for performing successful cloud seeding and rain enhancement.

한반도 대기정체의 특성 및 지역기후모델 HadGEM3-RA를 이용한 미래 전망 (Characteristics of Air Stagnation over the Korean Peninsula and Projection Using Regional Climate Model of HadGEM3-RA)

  • 김도현;김진욱;김태준;변재영;김진원;권상훈;김연희
    • 대기
    • /
    • 제30권4호
    • /
    • pp.377-390
    • /
    • 2020
  • Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.