DOI QR코드

DOI QR Code

Characteristics of Air Stagnation over the Korean Peninsula and Projection Using Regional Climate Model of HadGEM3-RA

한반도 대기정체의 특성 및 지역기후모델 HadGEM3-RA를 이용한 미래 전망

  • Kim, Do-Hyun (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Jin-Uk (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Tae-Jun (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Byon, Jae-Young (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Jin-Won (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kwon, Sang-Hoon (Innovative Meteorological Research Department, National Institute of Meteorological Sciences) ;
  • Kim, Yeon-Hee (Innovative Meteorological Research Department, National Institute of Meteorological Sciences)
  • 김도현 (국립기상과학원 미래기반연구부) ;
  • 김진욱 (국립기상과학원 미래기반연구부) ;
  • 김태준 (국립기상과학원 미래기반연구부) ;
  • 변재영 (국립기상과학원 미래기반연구부) ;
  • 김진원 (국립기상과학원 미래기반연구부) ;
  • 권상훈 (국립기상과학원 미래기반연구부) ;
  • 김연희 (국립기상과학원 미래기반연구부)
  • Received : 2020.08.19
  • Accepted : 2020.10.14
  • Published : 2020.12.31

Abstract

Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.

Keywords

References

  1. Bai, N., M. Khazaei, S. F. van Eeden, and I. Laher, 2007: The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacol. Ther., 113, 16-29. https://doi.org/10.1016/j.pharmthera.2006.06.005
  2. Cai, W., K. Li, H. Liao, H. Wang, and L. Wu, 2017: Weather conditions conducive to Beijing severe haze more frequent under climate change. Nature Clim. Change, 7, 257-262, doi:10.1038/nclimate3249.
  3. Davies, T., M. J. P. Cullen, A. J. Malcolm, M. H. Mawson, A. Staniforth, A. A. White, and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc., 131, 1759-1782. https://doi.org/10.1256/qj.04.101
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.
  5. Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 1937-1958, doi:10.5194/gmd-9-1937-2016.
  6. Giorgi, F., C. Jones, and G. R. Asrar, 2009: Addressing climate information needs at the regional level: the CORDEX framework. WMO Bulletin, 58, 175-183.
  7. Hong, C., and Coauthors, 2019: Impacts of climate change on future air quality and human health in China. Proc. Natl. Acad. Sci., 116, 17193-17200, doi:10.1073/pnas.1812881116.
  8. Horton, D. E., Harshvardhan, and N. S. Diffenbaugh, 2012: Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environ. Res. Lett., 7, 044034, doi:10.1088/1748-9326/7/4/044034.
  9. Im, E.-S., Y.-W. Choi, and J.-B. Ahn, 2017: Worsening of heat stress due to global warming in South Korea based on multi-RCM ensemble projections. J. Geophys. R. Atmos., 122, 444-11461, doi:10.1002/2017JD026731.
  10. Jo, E.-J., and Coauthors, 2017: Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Resp. Med., 124, 79-87, doi:10.1016/j.rmed.2017.02.010.
  11. Kan, H., S. J. London, G. Chen, Y. Zhang, G. Song, N. Zhao, L. Jiang, and B. Chen, 2007: Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environ. Int., 33, 376-384. https://doi.org/10.1016/j.envint.2006.12.001
  12. Kim, H.-C., and Coauthors, 2017: Recent increase of surface particulate matter concentrations in the Seoul Metropolitan Area, Korea. Sci. Rep., 7, 4710, doi:10.1038/s41598-017-05092-8.
  13. Kim, J., 2008: Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965-2004). Atmos. Environ., 42, 4778-4789. https://doi.org/10.1016/j.atmosenv.2008.01.040
  14. Kim, J., and Coauthors, 2014: Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors. Clim. Dyn., 42, 1189-1202, doi:10.1007/s00382-013-1751-7.
  15. Kim, S.-H., and Coauthors, 2015: Effects of particulate matter in ambient air on the development and control of asthma. Allergy Asthma Respir. Dis., 3, 313-319, doi:10.4168/aard.2015.3.5.313 (in Korean with English abstract).
  16. Korshover, J., and J. K. Angell, 1982: A review of air-stagnation cases in the eastern United States during 1981- Annual summary. Mon. Wea. Rev., 110, 1515-1518. https://doi.org/10.1175/1520-0493(1982)110<1515:AROASC>2.0.CO;2
  17. Kulkarni, S., M. C. Deo, and S. Ghosh, 2019: Performance of the CORDEX regional climate models in simulating offshore wind and wind potential. Theor. Appl. Climatol., 135, 1449-1464, doi:10.1007/s00704-018-2401-0.
  18. Lee, H.-J., Y. M. Jeong, S.-T. Kim, and W.-S. Lee, 2018: Atmospheric circulation patterns associated with particulate matter over South Korea and their future projection. J. Climate Change Res., 9, 423-433 (in Korean with English abstract). https://doi.org/10.15531/KSCCR.2018.9.4.423
  19. Lee, J. H., Y. P. Kim, K.-C. Moon, H.-K. Kim, and C. B. Lee, 2001: Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmos. Environ., 35, 635-643. https://doi.org/10.1016/S1352-2310(00)00378-2
  20. Lee, S., C.-H. Ho, and Y.-S. Choi, 2011: High-PM10 concentration episodes in Seoul, Korea: Background sources and related meteorological conditions. Atmos. Environ., 45, 7240-7247, doi:10.1016/j.atmosenv.2011.08.071.
  21. Park, C., and Coauthors, 2016: Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dyn., 46, 2469-2486, doi:10.1007/s00382-015-2713-z.
  22. Riahi, K., and Coauthors, 2017: The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environ. Change, 42, 153-168, doi:10.1016/j.gloenvcha.2016.05.009.
  23. Sellar, A. A., and Coauthors, 2019: UKESM1: Description and evaluation of the U.K. Earth System Model. J. Adv. Model. Earth Sy., 11, 4513-4558, doi:10.1029/2019MS001739.
  24. Torma, C., F. Giorgi, and E. Coppola., 2015: Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps. J. Geophys. R. Atmos., 120, 3957-3972, doi:10.1002/2014JD022781.
  25. van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: an overview. Climatic Change, 109, 5, doi:10.1007/s10584-011-0148-z.
  26. Wang, X., R. E. Dickinson, L. Su, C. Zhou, and K. Wang, 2018: PM2.5 pollution in China and how it has been exacerbated by terrain and meteorological conditions. Bull. Amer. Meteor. Soc., 99, 105-119, doi:10.1175/BAMS-D-16-0301.1.
  27. WHO, 2016: Ambient air pollution: a global assessment of exposure and burden of disease. World Health Organization, 121 pp.
  28. Xu, M., H. Xu, and J. Ma, 2016: Responses of the East Asian winter monsoon to global warming in CMIP5 models. Int. J. Climatol., 36, 2139-2155, doi:10.1002/joc.4480.
  29. Yang, Y., H. Liao, and S. Lou, 2016: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions. J. Geophys. Res. Atmos., 121, 13050-13065, doi:10.1002/2016JD025136.