• Title/Summary/Keyword: Metcalfa pruinosa

Search Result 17, Processing Time 0.033 seconds

Occurrence and Host Plant of Metcalfa Pruinosa (Say) (Hemiptera: Flatidae) in Korea (국내 미국선녀벌레의 분포 및 기주식물)

  • Kim, Dong-Eon;Kil, Jihyon
    • Journal of Environmental Science International
    • /
    • v.23 no.8
    • /
    • pp.1385-1394
    • /
    • 2014
  • Metcalfa pruinosa was considered to be a very harmful invasive species, due to its high species density in nature and wide range of its host plants. M. pruinosa was distributed in 28 sites among 143 sites. M. pruinosa has wide range and diverse host plants of 52 families 110 species including crop, fruits and forest trees. At present, the identified host plant of M. pruinosa are composed of 62 families and 145 species in total since their first appearance was reported. M. pruinosa was found in roadside 46.7%, followed by forests 33.3% and orchard 20%. Nymphs and adults cause damage to crop and orchard by sucking juice, outbreak of fungi through secretion of wax, and reduction of plant assimilation due to the nectar of nymphs. Also, it reduces the merchantable quality of fruits and thus causes economic damage. It is judged that M. pruinosa has been moved along major road via the traffic vehicles.

Host Plants of Metcalfa pruinosa (Say) (Hemiptera: Flatidae) Nymph and Adult (미국선녀벌레 유충과 성충의 기주)

  • Seo, Hwa-Young;Park, Deog-Kee;Hwang, In-Su;Choi, Yong-Seok
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.363-380
    • /
    • 2019
  • Previous studies on the host plant range of Metcalfa pruinosa were conducted without distinguishing between its stages of development. In this study, we investigated host plants by studying the nymph and adult development stages of M. pruinosa. M. pruinosa nymphs were found on host plants that belong to 78 families and 227 species, and, to the best of our knowledge, host plants that belong to 27 families and 38 species have been reported for the first time. The host plants were divided into woody and herbaceous at the nymph stage of M. pruinosa, and the nymphs were found in 110 herbaceous and 117 woody species. M. pruinosa adults were found on host plants that belong to 87 families and 233 species, and, host plants that belong to 26 families and 36 species have been reported for the first time. The host plants were divided into woody and herbaceous at the adult stage of M. pruinosa, and the adults were found in 105 herbaceous and 128 woody species. Therefore, the total domestic host plant of M. pruinosa was 98 families 345 species. The nymph and adult in preoviposition stage prefer Helianthus annuus and the adult in oviposition stage prefer Persicaria tinctoria and Rosa rugosa.

Effectiveness of Sensitivity Analysis for Parameter Selection in CLIMEX Modeling of Metcalfa pruinosa Distribution

  • Byeon, Dae-hyeon;Jung, Sunghoon;Mo, Changyeun;Lee, Wang-Hee
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.410-419
    • /
    • 2018
  • Purpose: CLIMEX, a species distribution modeling tool, includes various types of parameters representing climatic conditions; the estimation of these parameters directly determines the model accuracy. In this study, we investigated the sensitivity of parameters for the climatic suitability calculated by CLIMEX for Metcalfa pruinosa in South Korea. Methods: We first changed 12 parameters and identified the three significant parameters that considerably affected the CLIMEX simulation response. Results: The result indicated that the simulation was highly sensitive to changes in lower optimal temperatures, lower soil moisture thresholds, and cold stress accumulation rate based on the sensitivity index, suggesting that these were the fundamental parameters to be used for fitting the simulation into the actual distribution. Conclusion: Sensitivity analysis is effective for estimating parameter values, and selecting the most important parameters for improving model accuracy.

Susceptibility commercially of North American planthopper, Metcalfa pruinosa to commercially registered insecticides in Korea (국내시판 살충제에 대한 미국선녀벌레의 감수성)

  • Ahn, Ki-Su;Lee, Gwan-Seok;Lee, Kyeong-Hee;Song, Myung-Kyu;Lim, Sang-Cheol;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.3
    • /
    • pp.329-334
    • /
    • 2011
  • Insecticidal activity of 31 registered insecticides was tested against Metcalfa pruinosa adults. All experiments were conducted at the recommended concentration (ppm) of each insecticide. Among them, 16 insecticides from organophosphates (dichlorvos, fenitrothion, fenthion, methidathion, phenthoate), carbamates (methomyl), pyrethroids (${\alpha}$-cypemethrin, deltamethrin, fenpropathrin, ${\gamma}$-cyhalothrin), neonicotinoids (acetamiprid, clothianidin, dinotefuran, imidacloprid, thiamethoxam), and other (endosulfan) showed 100% mortality by spraying on the body of M. pruinosa adults. Dichlorvos, fenitrothion, fenthion, methidathion, phenthoate and endosulfan showed 100% mortality by plant-dipping method. The residual effect was showed 100% mortality in four insecticides (fenitrothion, fenthion, methidathion, phenthoate) at one day after treatment, and three insecticides (fenitrothion, methidathion, phenthoate) were showed the mortality of 90% at three days after treatment.

Attraction Effect of Sunflowers to Metcalfa pruinosa (Say) (Hemiptera: Flatidae) as Trap Plants (트랩식물로서 해바라기의 미국선녀벌레 유인효과)

  • Choi, Yong-Seok;Hwang, In-Su;Lee, Gyeong-Ju;Kim, Min-Jung;Baek, Sunghoon;Seo, Hwa-Young
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • The ability of sunflower, bean, green perilla, and sesame to attract Metcalfa pruinosa was tested in both laboratory and field conditions. In the laboratory experiment, sunflowers showed the highest attractiveness to M. pruinosa nymphs and adults. These results were the same as those in the field experiment. Sunflowers showed the highest attractiveness among the four candidates as a trap plant for M. pruinosa, with comparable average attractiveness values for nymphs and adults to those in the laboratory. Young beans also showed high attractiveness to M. pruinosa, albeit lower than those of sunflowers. However, the attractiveness of mature beans was low. Sunflowers consistently (P < 0.05) showed significantly higher attractiveness than that of the other three plants, regardless of plant age. Thus, sunflowers would serve as a good trap plant for both the nymphs and adults of M. pruinosa.

Analysis for Dispersal and Spatial Pattern of Metcalfa pruinosa (Hemiptera: Flatidae) in Southern Sweet Persimmon Orchard (남부지방 단감원에서 미국선녀벌레의 분산 및 공간분포 분석)

  • Park, Bueyong;Kim, Min-Jung;Lee, Sang-Ku;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.291-297
    • /
    • 2019
  • Since Metcalfa pruinosa was first reported in Koera, it has continually caused damage to sweet persimmon orchard in southern part of Korea. Metcafa pruinosa exist not only in farmland but also in forest areas, and are difficult to control due to the influx of individuals from near forest. M. pruinosa has been occurred in orchard and its surroundings because of various host range. Thus, it has been difficult to decide spatial range and control time for efficient management. In this study, occurrence and dispersal pattern of M. pruinosa in persimmon orchard were surveyed using clear sticky traps, and spatial patterns were analyzed with SADIE(Spatial Analysis by Distance IndicEs), based on location information at sticky traps. Spatial association between survey time was also analyzed to identify when the spatial pattern changed. In sweet persimmon orchard, M. pruinosa mainly dispersed in mid to late May, when the first instar hatches, and in August, emerging season of adult. The first instar nymphs hatched in mid-May were randomly distributed in orchard, but distribution was changed to aggregative pattern after dispersed surroundings of orchard. Adults showed random distribution pattern after immigration to orchard again. These tendency was also observed in density change at orchard and its surroundings, and matched to actual density of M. pruinosa in sweet persimmon trees.

Control Effect of Plant Extracts Mixture on Metcalfa pruinosa (say) (Hemiptera: Flatidae) (식물추출물 혼합물의 미국선녀벌레 방제효과)

  • Lee, Young Su;Lee, Hee A;Lee, Hyun Ju;Choi, Jong Yoon;Lee, Sang-Woo;Lee, Young Soon
    • Korean journal of applied entomology
    • /
    • v.58 no.4
    • /
    • pp.281-282
    • /
    • 2019
  • We have developed a composition containing three kinds of plant extracts (Deris, Citronella, and Cinnamon) and supplements (xanthan gum and silicone-based compounds) having high control effects on Metcalfa pruinosa. This composition had more than 90% of the nymph bug control effect in the ginseng plantation. In addition, since the insecticidal rate is high for other absorptive pests, it is considered that it can be used as a countermeasure against the implementation of the PLS (positive list system).

Insecticidal activities and repellent effects of methylcinnamate and essential oils from Alpinia galangal against nymphs and adults of Metcalfa pruinosa (양강근(Alpinia galangal Swartz) 정유와 양강근 유래 주요물질인 Methylcinnamate의 미국선녀벌레(Metcalfa pruinosa Say)에 대한 살충 및 기피 효과)

  • Park, Bueyong;Lee, Sang-Ku;Jeong, In-Hong;Park, Se-Keun;Lee, Sang-Bum
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.291-295
    • /
    • 2018
  • Metcalfa pruinosa is a pest causing widespread problems to many crops in Korea. This pest infects fruit crops especially, persimmon and grapes. We tested the possibility of M. pruinosa management using essential oils of Alpina galangal and methylcinnamate which were extracted from A. galangal by steam distillation method. The use of essential oil showed a mortality rate of 10.0 and 23.3% for adults and nymphs, respectively. While the use of methylcinnamate resulted to a mortality rate of 40.0% in adults and 36.6% in nymphs. For its repellent effect, it showed an avoidance rate of 50.0 and 63.3% for adult and nymph respectively. Considering these two results, the extract of A. galangal are shown to have some synergic effect for pest control. The result of this study showed a possibility of M. pruinosa control using essential oil and methylcinnamate from A. galangal.

Role of Metcalfa pruinosa as a Vector for Pseudomonas syringae pv. actinidiae

  • Donati, Irene;Mauri, Sofia;Buriani, Giampaolo;Cellini, Antonio;Spinelli, Francesco
    • The Plant Pathology Journal
    • /
    • v.33 no.6
    • /
    • pp.554-560
    • /
    • 2017
  • After 20 years of steady increase, kiwifruit industry faced a severe arrest due to the pandemic spread of the bacterial canker, caused by Pseudomonas syringae pv. actinidiae (Psa). The bacterium penetrates the host plant primarily via natural openings or wounds, and its spread is mainly mediated by atmospheric events and cultural activities. Since the role of sucking insects as vectors of bacterial pathogens is widely documented, we investigated the ability of Metcalfa pruinosa Say (1830), one of the most common kiwifruit pests, to transmit Psa to healthy plants in laboratory conditions. Psa could be isolated both from insects feeding over experimentally inoculated plants, and from insects captured in Psa-infected orchards. Furthermore, insects were able to transmit Psa from experimentally inoculated plants to healthy ones. In conclusion, the control of M. pruinosa is recommended in the framework of protection strategies against Psa.