• Title/Summary/Keyword: Metals and alloys

Search Result 425, Processing Time 0.038 seconds

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K.;Elango, A.;Nagarajan, N.M.;Mathiazhagan, N.;Vignesh, Kannan
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.

Electroforming and Properties of Fe-Ni alloy thin foil (Fe-Ni 합금 극박재 제조를 위한 전주성형기술 및 극박재 특성)

  • Yim T. B.;Lee H. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.188-191
    • /
    • 2004
  • Electroforming is a process that employs technology similar to that used for electroplating but which is used for manufacturing metallic articles, rather than as a means of producing surface coatings. Electroforming provides a cost-effective means of producing alloys and fully dense nanocrystalline metals as foils, sheets and complex shapes. It was able to make Fe-Ni foil with $5{\mu}m$ thickness by electroforming. Electroformed Fe-Ni alloy was nanocrystalline and the yield strength was in the range $2000{\sim}2800\;MPa$. The magnetic permeability at high frequency of electroformed Fe-Ni foil was higher than that of thicker foils.

  • PDF

Constitutive Modeling of AZ31B Magnesium Alloys (AZ31B 마그네슘 합금 판재의 구성식 개발)

  • Lee, M.G.;Chung, K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.234-238
    • /
    • 2007
  • Magnesium alloy sheets in room temperature have unusual mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening behavior. In this paper, the continuum plasticity models considering the plastic behavior of AZ31B Mg alloy sheet were derived. A new hardening law based on modified two-surface model was developed to consider the general stress-strain response of metals including Bauschinger effect, transient behavior and the unusual asymmetry. Three deformation modes observed during the continuous tension/compression tests were mathematically formulated with simplified relations between the state of deformation and their histories. To include the anisotropy and asymmetry of the initial yield stress, the Drucker-Prager's pressure dependent yield surface was modified by adding anisotropic constants.

Innovative Materials and Production Techniques for Sinterforged PM Aluminium Components with Improved Performance

  • Neubing, Hans-Claus;Ichikawa, Junichi;Gradl, Johann
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.710-711
    • /
    • 2006
  • High strength PM aluminium alloys Al-Zn-Mg-Cu (7075 type) were studied by using commercially available powder blends and the sinter-forging technique for component production. Principal areas of focus include the response to PM processing, micro structural assessment and material properties of Aluminium sinter forged products. Green preforms are successfully sintered to near full density by solid-supersolidus liquid phase sintering. Sinter forging method can produce components with net shape and mechanical characteristics of the material have improved greatly. Properties of this new PM Al-alloy were found to be reproducible in an industrial production environment.

  • PDF

Plastic Strain Ratios of Asymmetry Rolled Aluminum Sheets (비대칭 압연 알루미늄의 소성변형비)

  • Akramov, S.;Kim, I.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.425-426
    • /
    • 2007
  • The physical and mechanical properties of the sheets metals are closely related to the presence of preferred crystallographic orientations which were produced by the manufacturing process. To obtain the aluminum alloys sheets with good Al sheet formability, the plastic strain ratio (or r-value) of AA1050 Al sheets after asymmetric rolling and subsequent heat treatment was studied. The AA1050 aluminum alloy sheets after asymmetric rolling with high reduction ratio and following heat treatment had the higher plastic strain ratio.

  • PDF

Perturbation analysis of localized deformation by dynamic strain aging (Dynamic strain aging 에 의한 국소변형의 perturbation analysis)

  • Yang, Seung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.96-100
    • /
    • 2003
  • In the tensile loading of sheet metals made from polycrystalline aluminum alloys, a single deformation band appears inclined to the elongation axis in the early stage of plastic deformation, and symmetric double bands are observed in the later stage. This character of the localized deformation bands has been analyzed by a perturbation method. Macroscopic slip modes composed of slip planes and slip directions were assumed to describe the tensile and shear strains. Along time integration path, the value of the perturbation growth parameter was checked to find at which angle to the elongation axis the localized deformation bands are generated. It was shown that the mode of the localized deformation is related to asymmetry of material property.

  • PDF

A Brief Overview of Atom Probe Tomography Research

  • Gault, Baptiste
    • Applied Microscopy
    • /
    • v.46 no.3
    • /
    • pp.117-126
    • /
    • 2016
  • Atom probe tomography (APT) has been fast rising in prominence over the past decade as a key tool for nanoscale analytical characterization of a range of materials systems. APT provides three-dimensional mapping of the atom distribution in a small volume of solid material. The technique has evolved, with the incorporation of laser pulsing capabilities, and, combined with progress in specimen preparation, APT is now able to analyse a very range of materials, beyond metals and alloys that used to be its core applications. The present article aims to provide an overview of the technique, providing a brief historical perspective, discussing recent progress leading to the state-of-the-art, some perspectives on its evolution, with targeted examples of applications.

Prediction of Springback by Using Constitutive Equations of Mg Alloy Sheets (마그네슘 합금 구성식을 이용한 스프링백 예측)

  • Lee, M.G.;Chung, K.;Kim, S.J.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.2
    • /
    • pp.97-101
    • /
    • 2008
  • Unique constitutive behavior of magnesium alloys as one of hexagonal close packed(hcp) metals has been implemented into the commercial finite element program ABAQUS. The constitutive equations can represent asymmetry in tension-compression yield stresses and flow curves. For the verification purpose, the springback of AZ31B magnesium alloy sheet was measured using the unconstrained cylindrical bending test proposed in Numisheet'2002 benchmark committee. Besides the developed constitutive models, the isotropic models based on tensile and compressive properties were also considered for comparison purpose. The predicted results by the finite element analysis and corresponding experiments showed enhanced prediction capability in springback analysis.

Characteristics of Hardness of $(Cr,\;Fe)_7C_3$ in the Chromium-Carbide-Type Chromium White Iron Hardfacing Weld Deposits (크롬탄화물형 크롬백철 오버레이 용착금속에서의 $(Cr,\;Fe)_7C_3$의 경도특성)

  • Baek Eung-Ryul
    • Journal of Welding and Joining
    • /
    • v.23 no.2
    • /
    • pp.75-80
    • /
    • 2005
  • The effect of chemical constituents of $(Cr,\;Fe)_7C_3$ carbide phase on its hardness in the chromium-carbide type Cr white iron hardfacing weld deposits has been investigated. In order to examine $(Cr,\;Fe)_7C_3$ carbide phase, a series of filler metals with varying chromium contents was used. The alloys were deposited once or twice on a mild steel plate using the self?shielding flux cored arc welding process. The hardness of $(Cr,\;Fe)_7C_3$ carbide phase was measured by the micro-Vickers hardness test. It was shown that hardness of $(Cr,\;Fe)_7C_3$ carbide phase increased with increasing Cr content in $(Cr,\;Fe)_7C_3$ carbide phase. This behavior of the hardness of $(Cr,\;Fe)_7C_3$ carbide phase was explained by the types of chemical bonds that hold atoms together in $(Cr,\;Fe)_7C_3$ carbide phase.

A Study for the Development of NC Simulator System of Wire Cut EDM (와이어 컷 방전가공의 효율적인 NC 모의가공 시스템 개발에 관한 연구)

  • 유우식;김남웅
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.11a
    • /
    • pp.285-290
    • /
    • 2003
  • This paper describes the NC simulator system for Wire-cut electrodischarge machining. Electrodischarge Wire-cut machining is applicable to all materials including metals, alloys, and most carbides. Although CAM system generate the NC code considering electrodischarge conditions, incorrect Wire-cut tool path bring about fatal results. The simplest way of simulating a EDM process is to display the trajectory of Wire-cutter location by line segments. With this kind of simulation, the programmer can get a general idea about whether the wire is moving as planned but cannot locate gouging or excess material because only the wire location will be seen, not the changes in the workpiece as it is machined. The ideal way of simulating the EDM process is to display the solid model of the workpiece as it is machined. Therefore we propose the ideal NC simulator system for Wire-cut EDM.

  • PDF