DOI QR코드

DOI QR Code

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K. (KMCT College of Engineering) ;
  • Elango, A. (Department of Mechanical Engineering, A C College of Engg and Tech) ;
  • Nagarajan, N.M. (Department of Mechanical Engineering, National Institute of Technology) ;
  • Mathiazhagan, N. (Department of Mech. Engg, Meenakshi Ramaswamy Engineering College) ;
  • Vignesh, Kannan (IBM India Pvt Ltd.)
  • Received : 2016.05.14
  • Accepted : 2018.06.21
  • Published : 2018.10.25

Abstract

Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.

Keywords

References

  1. John, C.J. (2005), Laser Processing of Engineering Materials, Elsevier.
  2. Brandon, D. and Kaplan, W.D. (1997), Joining Process, An introduction, John Wiley, U.K.
  3. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J., De, P.,Smet, A., Haszler. and Vieregge. (2000), "Recent development in aluminium alloys for the automotive industry", A Mater. Sci. Eng. A, 280(1), 37. https://doi.org/10.1016/S0921-5093(99)00653-X
  4. Faller, K. and Froes, F.H. (2001), "The use of titanium in family automobiles: Current trends", JOM, 53(4), 27. https://doi.org/10.1007/s11837-001-0143-3
  5. Sze, S.M. (1983), VLSI Technology, McGraw-Hill, New York, U.S.A.
  6. Rendigs, K.H. (1997), "Aluminium structures used in aerospace-status and prospects", Mater. Sci. For., 242, 11-24.
  7. Heinz, A., Haszler, A., Keidel, C., Moldenhauer, S., Benedictus, R. and Miller, W.S. (2000), "Recent development in aluminium alloys for aerospace applications", Mater. Sci. Eng., 280(1), 102. https://doi.org/10.1016/S0921-5093(99)00674-7
  8. Williamson, J.R., Paton, N.E. and Hamilton, C.H. (1982), Superplastic Forming of Structural Alloys, TMS AIME, Warrendale, 291.
  9. ASM Handbook (1990), Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM International Handbook Committee, 10th Edition, 2.
  10. Alhazaa, A.N. and Khan, T.I. (2010), "Diffusion bonding of Al7075 to Ti-6Al-4V using Cu coating and Sn-3.6Ag-1Cu interlayer", J. Alloys Compd., 494, 351-358. https://doi.org/10.1016/j.jallcom.2010.01.037
  11. Mirjalili, M., Soltanieh, M., Matsuura, K. and Ohno, M. (2013), "On thekinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple", Intermetall., 32, 297-302. https://doi.org/10.1016/j.intermet.2012.08.017
  12. Dressler, U, Biallas, G. and Alfaro Mercado, U. (2009), "Friction stir welding of titanium alloy TiAl6V4 to aluminiumalloyAA2024-T3", Mater. Sci. Eng., 526, 113-117. https://doi.org/10.1016/j.msea.2009.07.006
  13. Bang, H.S., Song., H.J. and Joo, S.M. (2013), "Joint properties of dissimilar Al6061-T6 aluminum alloy/Ti-6%Al-4%V titanium alloy by gas tungsten arc welding assisted hybrid friction stir welding", Mater. Des., 51, 544-551.
  14. Moller, F., Grden, M., Thomy C. and Vollertsen, F. (2011), "Combined laserbeam welding and brazing process for aluminum titanium hybrid structures", Phys. Proc., 12, 215-223. https://doi.org/10.1016/j.phpro.2011.03.028
  15. Chen, Y.B., Chen, S.H. and Li, L.Q. (2009), "Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spotlaser welding-brazing method", Int. J. Adv. Manuf. Technol., 44, 265-272. https://doi.org/10.1007/s00170-008-1837-2
  16. Chen, S.H., Li, L.Q., Chen, Y.B., Dai, J.M. and Huang, J.H. (2011), "Improving interfacial reaction nonhomogeneity during laser welding-brazing aluminum to titanium", Mater. Des., 32, 4408-4416. https://doi.org/10.1016/j.matdes.2011.03.074
  17. Vaidya, W.V., Horstmann, M., Ventzke, V., Petrovski, B., Kocak, M., Kocik, R. and Tempus, G. (2010), "Improving interfacial properties of a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4Vfor aeronautical applications", J. Mater. Sci., 45, 6242-6254. https://doi.org/10.1007/s10853-010-4719-6
  18. Lv, S.X., Cui, Q.L., Huang, Y.X. and Jing, X.J. (2013), "Influence of Zr addition on TIG welding-brazing of Ti-6Al-4V to Al5A06", Mater. Sci. Eng. A, 568, 150-154.
  19. ASM Metals Hand Book (1989), Non-destructive Evaluation and Quality Control, 17.
  20. Tzeng, Y.F. (2000), "Parametric analysis of the pulsed Nd: YAG laser seam-welding process", J. Mater. Proc. Technol., 102, 40-47. https://doi.org/10.1016/S0924-0136(00)00447-7
  21. Tzeng, Y.F. (2000), "Process characterisation of pulsed Nd:YAG laser seam welding", Int. J. Adv. Manuf. Technol., 16, 10-18. https://doi.org/10.1007/PL00013126
  22. Donachie, M.J. (1989), Titanium: A Technical Guide, ASM International, Materials Park, OH.