• Title/Summary/Keyword: Metal-insulator-silicon

Search Result 97, Processing Time 0.025 seconds

Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device

  • Kim, Sungjun;Cho, Seongjae;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • In this study, we fabricated Ag-based electrochemical metallization memory devices which is also called conductive-bridge random-access memory (CBRAM) in order to investigate the resistive switching behavior depending on the bottom electrode (BE). RRAM cells of two different layer configurations having $Ag/Si_3N_4/TiN$ and $Ag/Si_3N_4/p^+$ Si are studied for metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) structures, respectively. Switching voltages including forming/set/reset are lower for MIM than for MIS structure. It is found that the workfunction different affects the performances.

Effect of the fixed oxide charge on the metal-oxide-silicon-on-insulator structures (metal-oxide-silicon-on-insulator 구조에서 고정 산화막 전하가 미치는 영향)

  • Jo, Yeong-Deuk;Kim, Ji-Hong;Cho, Dae-Hyung;Moon, Byung-Moo;Koh, Jung-Hyuk;Ha, Jae-Geun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.83-83
    • /
    • 2008
  • Metal-oxide-silicon-on-insulator (MOSOI) structures were fabricated to study the effect caused by reactive ion etching (RIE) and sacrificial oxidation process on silicon-on-insulator (SOI) layer. The MOSOI capacitors with an etch-damaged SOI layer were characterized by capacitance-voltage (C-V) measurements and compared to the sacrificial oxidation treated samples and the reference samples without etching treatment. The measured C-V curves were compared to the numerical results from 2-dimensional (2-D) simulations. The measurements revealed that the profile of C-V curves significantly changes depending on the SOI surface condition of the MOSOI capacitors. The shift in the measured C-V curves, due to the difference of the fixed oxide charge ($Q_f$), together with the numerical simulation analysis and atomic force microscopy (AFM) analysis, allowed extracting the fixed oxide charges ($Q_f$) in the structures as well as 2-D carrier distribution profiles.

  • PDF

Deposition and Electrical Properties of Silicon Nitride Thin Film MIM Capacitors for MMIC Applications (MMIC에 적용되는 MIM 커패시터의 실리콘 질화막 증착과 전기적 특성)

  • 성호근;소순진;박춘배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.283-288
    • /
    • 2004
  • We have fabricated MIM capacitors for MMIC applications, with capacitances as high as 600pF/$\textrm{mm}^2$ and excellent electrical properties of the insulator layer. Silicon nitride thin film is the desirable material for MMIC capacitor fabrication. Standard MIM capacitance in MMIC is 300pF/$\textrm{mm}^2$ with an insulator layer thickness of more than 2000$\AA$. However, capacitors with thin insulator layers have breakdown voltages as low as 20V. We have deposited insulator layers by PECVD in our MIM structure with an air bridge between the top metal and the contact pad. The PECVD process was optimized for fabricating the desired capacitors to be used in MMIC. Silicon nitride(Si$_{x}$N$_{y}$) thin films of about 1000$\AA$ thick show capacitances of about 600pF/$\textrm{mm}^2$, and breakdown voltages above 70V at 100nA.A.A.

Solution-Processed Gate Insulator of Ethylene-Bridged Silsesquioxnae for Organic Field-Effect Transistor (OTFT용 용액공정의 에틸렌-브리지드 실세스퀴옥산 게이트 절연체)

  • Lee, Duck-Hee;Jeong, Hyun-Dam
    • Journal of Integrative Natural Science
    • /
    • v.3 no.1
    • /
    • pp.7-18
    • /
    • 2010
  • Ethylene-bridged silsesquioxane resins were synthesized from two monomers: 1,2-bis(trimethoxysilyl)ethane and methyltrimethoxysilane. The silsesquioxane thin films were spin-coated from the copolymerized resins on silicon wafer. Metal insulator metal (MIM), metal insulator semiconductor (MIS) devices were utilized to investigate the electrical properties of the copolymerized thin films. As the films were inserted as gate insulator in the OTFT devices, the field effect mobilitites were evaluated by employing Poly(3-hexylthiophene) (P3HT) as organic semiconductor, which shows that their dielectric properties and mobility values are dependent on the molecular structures and Si-OH concentration involving in the films.

C-V Characteristics of Porous Silicon Alcohol Sensors with the Semi-transparent Electrode (반투명 전극으로 된 다공질 실리콘 알코올 가스 센서의 C-V 특성)

  • 김성진;이상훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1085-1088
    • /
    • 2003
  • In this work, we fabricated a gas-sensing device based on porous silicon(PS), and its I-V and C-V properties were investigated for sensing alcohol vapor. The structure of the sensor consists of thin Au/Oxidized porous silicon/porous silicon/Silicon/Al, where the silicon substrate is etched anisotropically to be prepared into a membrane shape. As the result, I-V curves showed typical tunneling property, and C-V curves were shaped like those of a MIS (metal-insulator- semiconductor) capacitor, where the capacitance in accumulation was increased with alcohol vapor concentration.

  • PDF

A Novel Body-tied Silicon-On-Insulator(SOI) n-channel Metal-Oxide-Semiconductor Field-Effect Transistor with Grounded Body Electrode

  • Kang, Won-Gu;Lyu, Jong-Son;Yoo, Hyung-Joun
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.1-12
    • /
    • 1996
  • A novel body-tied silicon-on-insulator(SOI) n-channel metal-oxide-semiconductor field-effect transistor with grounded body electrode named GBSOI nMOSFET has been developed by wafer bonding and etch-back technology. It has no floating body effect such as kink phenomena on the drain current curves, single-transistor latch and drain current overshoot inherent in a normal SOI device with floating body. We have characterized the interface trap density, kink phenomena on the drain current ($I_{DS}-V_{DS}$) curves, substrate resistance effect on the $I_{DS}-V_{DS}$ curves, subthreshold current characteristics and single transistor latch of these transistors. We have confirmed that the GBSOI structure is suitable for high-speed and low-voltage VLSI circuits.

  • PDF

High-Performance Silicon-on-Insulator Based Dual-Gate Ion-Sensitive Field Effect Transistor with Flexible Polyimide Substrate-based Extended Gate (유연한 폴리이미드 기판 위에 구현된 확장형 게이트를 갖는 Silicon-on-Insulator 기반 고성능 이중게이트 이온 감지 전계 효과 트랜지스터)

  • Lim, Cheol-Min;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.11
    • /
    • pp.698-703
    • /
    • 2015
  • In this study, we fabricated the dual gate (DG) ion-sensitive field-effect-transistor (ISFET) with flexible polyimide (PI) extended gate (EG). The DG ISFETs significantly enhanced the sensitivity of pH in electrolytes from 60 mV/pH to 1152.17 mV/pH and effectively improved the drift and hysteresis phenomenon. This is attributed to the capacitive coupling effect between top gate and bottom gate insulators of the channel in silicon-on-transistor (SOI) metal-oxide-semiconductor (MOS) FETs. Accordingly, it is expected that the PI-EG based DG-ISFETs is promising technology for high-performance flexible biosensor applications.

Study on Characteristics of 4H-SiC MOS Device with PECVD SiON Insulator (PECVD SiON 절연막을 이용한 4H-SiC MOS 소자 특성 연구)

  • Kim, Hyun-Seop;Lee, Jae-Gil;Lim, Jongtae;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.706-711
    • /
    • 2018
  • In this work, we have investigated the characteristics of 4H-SiC metal-oxide-semiconductor (MOS) devices with silicon oxynitride (SiON) insulator using plasma enhanced chemical vapor deposition (PECVD). After post metallization annealing, the trap densities of the fabricated devices decreased significantly. In particular, the device annealed at $500^{\circ}C$ in forming gas ambient exhibited excellent MOS characteristics along with negligible hysteresis, which proved the potential of PECVD SiON as an alternative gate insulator for use in 4H-SiC MOS device.

Electronics processed at very low temperature (T<180$^{\circ}C$)

  • Mohammed-Brahim, T.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.951-952
    • /
    • 2009
  • The long way toward new silicon technology, processed at very low temperature on any substrate, is described. The technology is based on CMIS (Complementary Metal Insulator Semiconductor) structure that shown its efficiency with known CMOS electronics. Present performance of this new technology is discussed through electrical parameters and reliability of transistors.

  • PDF

저온 증착된 게이트 절연막의 안정성 향상을 위한 플라즈마 처리

  • Choe, U-Jin;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;An, Si-Hyeon;Park, Cheol-Min;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.342-342
    • /
    • 2011
  • 산화막은 반도체 공정 중 가장 핵심적이며 기본적인 물질이다. 반도체 소자에서 내부의 캐리어들의 이동을 막고 전기를 절연시켜주는 절연체로서 역할을 하게 된다. 실제로 제작된 산화막에서는 dangling bond 혹은 내부에 축적되는 charge들의 의해 leakage가 생기게 되고 그에 따라 산화막의 특성은 저하되게 된다. 내부에서 특성을 저하시키는 defect을 감소시키기 위해 Plasma Treatment에 따른 특성변화를 관찰하였다. 본 연구에서는 최적화 시킨 Flexible TFT제작을 위해 저온에서 Silicon Oxide로 형성한 Gate Insulator에 각각 N2O, H2, NH3가스를 주입 후 Plasma처리를 하였다. 특성화 시킨 Gate Insulator를 이용하여 MIS(Metal-Insulator-Semiconductor)구조를 제작 후 C-V curve특성변화, Dit의 감소, Stress bias에 따른 stability를 확인 하였다.

  • PDF