• Title/Summary/Keyword: Metal surface temperature

Search Result 1,122, Processing Time 0.032 seconds

Syntheses of Polysiloxane-Bridged Dinuclear Metallocenes and Their Catalytic Activities

  • 노석균;김수찬;이동호;윤근병;이훈봉
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.618-622
    • /
    • 1997
  • The polysiloxane-bridged dinuclear metallocenes $[(SiMe_2O)_n-SiMe_2(C_5H_4)_2][(C_9H_7)ZrCl_2]_2$ (n=1 (7), 2 (8), 3 (9)) have been generated as a model complex for the immobilized metallocene at silica surface by treating the respective disodium salts of the ligands with 2 equivalents of $(C_9H_7)ZrCl_3$ in THF. All three complexes are characterized by $^1H$ NMR and measurement of metal content through ICP-MS. It turned out that the values of ${\Delta}{\delta}=[{\delta}_d-{\delta}_p]$, the chemical shift difference between the distal $({\delta}_d)$ and proximal $({\delta}_p)$ protons, for the produced dinuclear compounds (0.47 for 7, 0.49 for 8, and 0.5 for 9) were larger than the Δδ value of the known ansa-type complex holding the same ligand as a chelating one, that is just the opposite to the normal trend. In order to compare polymerization behavior of the dinuclear metallocene with the corresponding mononuclear metallocene, (Cp)$(C_9H_7)ZrCl_2$ was separately prepared. To investigate the catalytic properties of the dinuclear complexes and mononuclear metallocenes ethylene polymerization has been conducted in the presence of MMAO. The polymerization results display the typical activity dependence on polymerization temperature for all complexes. The most important feature is that the polymers from the dinuclear metallocenes represent enormously improved molecular weight compared with the polymer from the corresponding mononuclear metallocene. In addition, the influence of the nature of the bridging ligand upon the reactivities of the dinuclear metallocenes has also been observed.

Global Fitting Functions for Kinetics of Fe-Selective Chlorination in Ilmenite and Successive Chlorination of Beneficiated TiO2 (일메나이트 중 철의 선택적 염화와 선광된 TiO2의 추가 염화반응에 대한 글로벌 피팅함수)

  • Chung, Dong-Kyu;Won, Yong Sun;Kim, Yong-Ha;Jung, Eun-Jin;Song, Duk-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.412-424
    • /
    • 2019
  • Global fitting functions for Fe-selective chlorination in ilmenite($FeTiO_2$) and successive chlorination of beneficiated $TiO_2$ are proposed and validated based on a comparison with experimental data collected from the literature. The Fe-selective chlorination reaction is expressed by the unreacted shrinking core model, which covers the diffusion-controlling step of chlorinated Fe gas that escapes through porous materials of beneficiated $TiO_2$ formed by Fe-selective chlorination, and the chemical reaction-controlling step of the surface reaction of unreacted solid ilmenite. The fitting function is applied for both chemical controlling steps of the unreacted shrinking core model. The validation shows that our fitting function is quite effective to fit with experimental data by minimum and maximum values of determination coefficients of $R^2$ as low as 0.9698 and 0.9988, respectively, for operating parameters such as temperature, $Cl_2$ pressure, carbon ratio and particle size that change comprehensively. The global fitting functions proposed in this study are expressed simply as exponential functions of chlorination rate(X) vs. time(t), and each of them are validated by a single equation for various reaction conditions. There is therefore a certain practical merit for the optimal process design and performance analysis for field engineers of chlorination reactions of ilmenite and $TiO_2$.

Synthesis of Dimer Acid Methyl Ester Using Base-treated Montmorillonite (염기 처리된 montmorillonite를 이용한 다이머산 메틸에스테르의 합성)

  • Yuk, Jeong Suk;Shin, Jihoon;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.132-138
    • /
    • 2019
  • In this study, we demonstrate the effects of the acidic properties of montmorillonite (MMT), which is commonly used as a catalyst, on the conversion and selectivity of the dimer acid methyl ester (DAME) synthesis. We synthesize DAME by the dimerization of conjugated linoleic acid methyl ester (CLAME) and oleic acid methyl ester using MMT KSF. Incidentally, trimer acid methyl ester was formed as a by-product during the DAME synthesis. There is a necessity to adequately adjust the strength and quantity of the acid site to control the selectivity of DAME. Therefore, we vary the pH of the MMT acid by using various metal hydroxides. The purpose of this study is to increase the yield of monocyclic dimer acid methyl ester, which is a substance with adequate physical properties for industrial applications (e.g., lubricant and adhesive, etc.), using a heterogeneous catalyst. We report the dimerization of fatty acid methyl ester by using base treated-KSF, and apply it to conjugated soybean oil methyl ester. Then, we transmute the acid site properties of KSF, such as pH of 5 wt.% slurry KSF and various alkali metals (Li, Na, K, Ca). Characterization of base treated-KSF using a pH meter, x-ray diffraction, inductively coupled plasma-atomic emission spectrometer, Brunauer-Emmett-Teller surface analysis, and temperature-programmed desorption. We conduct an analysis of CLAME and DAME using nuclear magnetic resonance spectroscopy, gas chromatography, and gel permeation chromatography. Through these experiments, we demonstrate the effects of the acidic properties of KSF on the conversion and selectivity of the DAME synthesis, and evaluate its industrial potential by application to waste vegetable oil.

Study of the Distillation of Ferromanganese Alloy Melts at Reduced Pressure (훼로 망간 합금철 용탕의 감압 증류에 관한 연구)

  • Hong, Seong-Hun;Jeon, Byoung-Hyuk;You, Byung-Don;Kim, Jong-Deok;Jang, Pill-Yong;Kang, Soo-Chang;Geum, Chang-Hun
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.154-162
    • /
    • 2010
  • A fundamental study of the distillation behavior of ferromanganese alloy melts was carried out at 1773 K and 0.1333 kPa (=1 Torr). During the distillation of ferromanganese alloy melts under reduced pressure, manganese vaporizes preferentially to phosphorus and other solute elements. High purity manganese metal with a very low content of solute elements can be obtained by distillation of ferromanganese alloy melts. The evaporation of manganese is suppressed as the carbon content of ferromanganese alloy melt increases due to the decrease of activity and vapor pressure of the manganese. When the carbon content of ferromanganese alloy melt is high, melt droplets are ejected from the bath, especially in the early stages of the distillation, and the solute elements in the splashed droplets contaminate the condensed material. The ejection of melt droplets is presumed to be caused by the increase of melting temperature and viscosity of the surface layer of melt due to the enrichment of solute elements such as carbon and iron.

Preparation of Cu and Mn Bimetallic Catalyst Based on Co-Precipitation Method for Removal of Ethyl Acetate (아세트산 에틸 제거를 위한 공침법 기반의 Cu 및 Mn 이종금속 촉매의 제조)

  • Kim, Min Jae;Yoon, Jo Hee;Jeong, Jae-Min;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.466-470
    • /
    • 2022
  • The catalytic thermal oxidizer process has recently attracted considerable attention for the oxidation and decomposition of volatile organic compounds at low temperatures (< 450 ℃) with high efficiency (> 95%). Although many noble metal catalytic materials are well established, they are expensive and hazardous. Herein, highly active and low-cost Cu-Mn bimetallic catalysts were prepared using a simple and facile synthesis method involving the co-precipitation of Cu and Mn precursors. The synthesis of the catalyst was optimized by controlling the composition ratio of Cu and Mn. The optimized catalyst exhibited a large surface area of 230.8 m2/g with a mesoporous structure. To demonstrate the catalytic performance, the Cu-Mn catalyst was tested for the oxidation reaction of ethyl acetate, showing a high conversion efficiency of 100% at a low temperature of 250 ℃.

Morphology Control of Nanostructured Graphene on Dielectric Nanowires

  • Kim, Byeong-Seong;Lee, Jong-Un;Son, Gi-Seok;Choe, Min-Su;Lee, Dong-Jin;Heo, Geun;Nam, In-Cheol;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.375-375
    • /
    • 2012
  • Graphene is a sp2-hybridized carbon sheet with an atomic-level thickness and a wide range of graphene applications has been intensely investigated due to its unique electrical, optical, and mechanical properties. In particular, hybrid graphene structures combined with various nanomaterials have been studied in energy- and sensor-based applications due to the high conductivity, large surface area and enhanced reactivity of the nanostructures. Conventional metal-catalytic growth method, however, makes useful applications difficult since a transfer process, used to separate graphene from the metal substrate, should be required. Recently several papers have been published on direct graphene growth on the two dimensional planar substrates, but it is necessary to explore a direct growth of hierarchical nanostructures for the future graphene applications. In this study, uniform graphene layers were successfully synthesized on highly dense dielectric nanowires (NWs) without any external catalysts. We also demonstrated that the graphene morphology on NWs can be controlled by the growth parameters, such as temperature or partial pressure in chemical vapor deposition (CVD) system. This direct growth method can be readily applied to the fabrication of nanoscale graphene electrode with designed structures because a wide range of nanostructured template is available. In addition, we believe that the direct growth growth approach and morphological control of graphene are promising for the advanced graphene applications such as super capacitors or bio-sensors.

  • PDF

InGaZnO active layer 두께에 따른 thin-film transistor 전기적인 영향

  • U, Chang-Ho;Kim, Yeong-Lee;An, Cheol-Hyeon;Kim, Dong-Chan;Gong, Bo-Hyeon;Bae, Yeong-Suk;Seo, Dong-Gyu;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.5-5
    • /
    • 2009
  • Thin-film-transistors (TFTs) that can be prepared at low temperatures have attracted much attention because of the great potential for transparent and flexible electronics. One of the mainstreams in this field is the use of organic semiconductors such as pentacene. But device performance of the organic TFTs is still limited due to low field-effect mobility and rapid degradation after exposing to air. Alternative approach is the use of amorphous oxide semiconductors as a channel. Amorphous oxide semiconductors (AOSs) based TFTs showed the fast technological development, because AOS films can be fabricated at room temperature and exhibit the possibility in application like flexible display, electronic paper, and larges solar cells. Among the various AOSs, a-IGZO has lots of advantages because it has high channel mobility, uniform surface roughness and good transparency. [1] The high mobility is attributed to the overlap of spherical s-orbital of the heavy post-transition metal cations. This study demonstrated the effect of the variation in channel thickness from 30nm to 200nm on the TFT device performance. When the thickness was increased, turn-on voltage and subthreshold swing was decreased. The a-IGZO channels and source/drain metals were deposited with shadow mask. The a-IGZO channel layer was deposited on $SiO_2$/p-Si substrates by RF magnetron sputtering, where RF power is 150W. And working pressure is 3m Torr, at $O_2/Ar$ (2/28 sccm) atmosphere. The electrodes were formed with electron-beam evaporated Ti (30 nm) and Au (70 nm) bilayer. Finally, Al (150nm) as a gate metal was thermal-evaporated. TFT devices were heat-treated in a furnace at 250 $^{\circ}C$ and nitrogen atmosphere for 1hour. The electrical properties of the TFTs were measured using a probe-station. The TFT with channel thickness of 150nm exhibits a good subthreshold swing (SS) of 0.72 V/decade and on-off ratio of $1{\times}10^8$. The field effect mobility and threshold voltage were evaluated as 7.2 and 8 V, respectively.

  • PDF

Crystal growth of gypsum by neutralization reaction of waste sulphuric acid using sludge and dust in Pohang Iron & Steel plant (포항제철(주) 슬러지와 Dust를 이용한 폐황산 중화반응에서 얻어진 석고의 결정성장연구)

  • Ji whan Ahn;Ka yeon Kim;Hwan Kim;Sang bop Lee;Eu dug Hwang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.673-680
    • /
    • 1997
  • NaOH, $Na_2CO_3, CaO, Ca(OH)_2$ and $CaCO_3$ are widely used counteractives for neoutralizing the waste sulphuric acid produced during the metal surface treatment process and/or the metal refining process. To reduce the tremendous expenses for the neutralization treatment of the waste sulphuric acid, the sludge from calcination plant and the stainless refining dust in POSCO (Pohang Iron & Steel co. Ltd.) was utilized. For the sludge, it will be effective to use calcined and then hydrated sludge in strong acid region (pH<2) and to use the sludge itself in weak acid region (pH>2), The gypsum, the by-product of this treatment, was tested to fit the industrial standard of gypsum, so it is expected that it will solve the lack of gypsum supply. For the stainless refining dust, the phase and the morphology of produced gypsum from waste suiphuric acid neutralization was compared with those from pure sulphuric acid. Because of high reactivity and reaction temperature, $CaSO_4$ non-hydrate was obtained in pure sulphuric acid. But $CaSO_4$ dihydrate was obtained in waste sulphuric acid. It is also judged to be a good material for a counteractive of the waste sulphuric acid.

  • PDF

Synthesis and Physical Properties of MO·Fe12O18 (M/Ba and Sr) Nanoparticles Prepared by Sol-Gel Method Using Propylene Oxide (Propylene Oxide를 이용한 졸-겔법에 의한 MO·Fe12O18 (M/Ba, Sr) 나노 분말의 합성과 물리적 특성)

  • Lee, Su Jin;Choe, Seok Burm;Gwak, Hyung Sub;Paik, Seunguk
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.420-425
    • /
    • 2006
  • Nano sized mixed metal hexagonal ferrite powders with improved magnetic properties have been prepared by sol-gel method using propylene oxide as a gelation agent. To obtain the desired ferrite, two different metal ions were used. One of the ions has only +2 formal charge. The key step in the processes is that hydrated $Ba^{2+}$ or $Sr^{2+}$ ions are hydrolyzed and condensed at the surface of the previously formed $Fe_{2}O_{3}$ gel. In this processes, all the reaction can be finished within a few minutes. The magnetic properties of the produced powder were improved by heat treatment. The highest values of the magnetic properties were achieved at temperature $150^{\circ}C$ lower than those of the previously published values. The highest observed values of coercivity and the saturation magnetization of Sr-ferrite and Ba-ferrite powder were 6198 Oe, 5155 Oe and 74.4 emu/g, 68.1 emu/g, respectively. The ferrite powder annealed at $700^{\circ}C$ showed spherical particle shapes. The resulting spheres which were formed by the aggregation of nanoparticles with size 3~5 nm have diameter around 50 nm. The powder treated at $800^{\circ}C$ showed hexagonal-shaped grains with crystallite size above 500 nm.

Preparation of Metal Hydrides Using Chemical Synthesis and Hydriding Kinetics (화학적 합성법에 의한 금속수소화물의 제조 및 수소화 속도론적 연구)

  • Lee, Yun Sung;Oh, Jae Wan;Moon, Sung Sik;Nahm, Kee Suk
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.255-260
    • /
    • 1998
  • Metal hydrides, $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$, were prepared using chemical synthetic method, and their physical properties were examined using various analytic techniques such as TGA, XRD, SEM and EDX. The activation of the chemically prepared $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$ was achieved by two hydriding/dehydriding cycles only. The miasurements of P-C-T curves revealed that 6 and 5.5 hydrogen atoms were stored in LaNi5and $LaNi_{4.5}Al_{0.5}$, respectively. The hydriding reaction rated for $LaNi_{4.5}Al_{0.5}$ were measured by the method of initial rates. It was found that the shrinking unreacted core model could be applied for the analysis of hydriding kinetics of $LaNi_5$. The rate controlling step of this reaction was the dissociative chemisorption of hydrogen molecules on the surface of $LaNi_5$. The activation energy was $9.506kcal/mol-H_2$. The rates measured in the temperature range from 273 to 343K and in pressure difference ($P_o-P_{eq}$) range form 0.25 to 0.66atm could be expressed as the following equation ; $\frac{dX}{dt}=4.636(P_o-P_{eq})$ exp($\frac{-9506}{RT}$).

  • PDF