Preparation of Metal Hydrides Using Chemical Synthesis and Hydriding Kinetics

화학적 합성법에 의한 금속수소화물의 제조 및 수소화 속도론적 연구

  • Lee, Yun Sung (School of Chemical Engineering and Technology, Chonbuk National University) ;
  • Oh, Jae Wan (School of Chemical Engineering and Technology, Chonbuk National University) ;
  • Moon, Sung Sik (School of Chemical Engineering and Technology, Chonbuk National University) ;
  • Nahm, Kee Suk (School of Chemical Engineering and Technology, Chonbuk National University)
  • Received : 1997.12.05
  • Accepted : 1998.01.22
  • Published : 1998.04.10

Abstract

Metal hydrides, $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$, were prepared using chemical synthetic method, and their physical properties were examined using various analytic techniques such as TGA, XRD, SEM and EDX. The activation of the chemically prepared $LaNi_5$ and $LaNi_{4.5}Al_{0.5}$ was achieved by two hydriding/dehydriding cycles only. The miasurements of P-C-T curves revealed that 6 and 5.5 hydrogen atoms were stored in LaNi5and $LaNi_{4.5}Al_{0.5}$, respectively. The hydriding reaction rated for $LaNi_{4.5}Al_{0.5}$ were measured by the method of initial rates. It was found that the shrinking unreacted core model could be applied for the analysis of hydriding kinetics of $LaNi_5$. The rate controlling step of this reaction was the dissociative chemisorption of hydrogen molecules on the surface of $LaNi_5$. The activation energy was $9.506kcal/mol-H_2$. The rates measured in the temperature range from 273 to 343K and in pressure difference ($P_o-P_{eq}$) range form 0.25 to 0.66atm could be expressed as the following equation ; $\frac{dX}{dt}=4.636(P_o-P_{eq})$ exp($\frac{-9506}{RT}$).

금속수소화물 $LaNi_5$$LaNi_{4.5}Al_{0.5}$을 화학적 합성법으로 제조하여, 합성된 금속수소화물의 물성을 다양한 방법으로 확인하였다. $LaNi_5$$LaNi_{4.5}Al_{0.5}$은 2회 정도 수소화/탈수소화 반응을 시키면 활성화되었으며, 압력-농도-온도 곡선을 측정한 결과 각각 6개와 5.5개의 수소원자가 저장되었다. $LaNi_{4.5}Al_{0.5}$의 경우 수소화 반응속도를 초기속도법으로 구한 결과 비반응 수축핵모델이 잘 적용되었으며, 수소화반응의 율속단계는 $LaNi_{4.5}Al_{0.5}$의 표면에서 수소분자의 해리화학흡착임을 알 수 있었다. $LaNi_{4.5}Al_{0.5}$의 수소화반응 활성화에너지는 $9.506kcal/mol-H_2$이었으며, 반응속도식은 273~343K와 $P_o-P_{eq}=0.25{\sim}0.66atm$의 범위에서 아래와 같이 표시되었다. $\frac{dX}{dt}=4.636(P_o-P_{eq})$ exp$\frac{-9506}{RT}$).

Keywords

Acknowledgement

Supported by : 학술진흥재단

References

  1. Int. J. Hydrogen Energy v.2 J. Pangborn;M. Scott;J. Sharer
  2. Int. J.Hydrogen Engergy v.4 C. J. Huang;K. K. Tang;J. H. Kelly;B. J. Berger
  3. Chem. Econ. and Eng. Rev. v.16 Y. Osumi
  4. Int. J. Hydrogen Energy v.14 W. Genshi;W. Xianglong;S. Deying;S. Panwen
  5. Elements of Chemical Reaction Engineering(2nd ed.) H. S. Fogler
  6. Int. J. Hydrogen Energy v.17 K. S. Nahm;W. Y. Kim;S. P. Hong;W. Y. Lee
  7. Ph. D. Dissertation, Seoul National Univ. K. S. Nahm
  8. Int. J. Hydrogen Energy v.1 G. Bronoel;J. Sarradin;A. Percheron-Guegan;J. C. Achard;L. Schlapbach
  9. Proc. Int. Conf. on Rare Earth Development and Applications v.2 W. Genshi;Z. Daxin;S. Deying;W. Xianglong;S. Panwen
  10. Proc. Int. Sym. on Hydrides for Energy Storage v.1 A. Percheron-Guegan;J. C. Achard;J. Sarradin;G. Bronoel
  11. Int. J. Hydrogen Energy v.15 K. S. Nahm;W. B. Jung;W. Y. Lee
  12. Int. J. Hydrogen Energy v.15 W. B. Jung;K. S. Nahm;W. Y. Lee