DOI QR코드

DOI QR Code

Preparation of Cu and Mn Bimetallic Catalyst Based on Co-Precipitation Method for Removal of Ethyl Acetate

아세트산 에틸 제거를 위한 공침법 기반의 Cu 및 Mn 이종금속 촉매의 제조

  • Kim, Min Jae (Department of Chemical Engineering, Kangwon National University) ;
  • Yoon, Jo Hee (Department of Chemical Engineering, Kangwon National University) ;
  • Jeong, Jae-Min (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • Received : 2022.07.11
  • Accepted : 2022.08.24
  • Published : 2022.10.10

Abstract

The catalytic thermal oxidizer process has recently attracted considerable attention for the oxidation and decomposition of volatile organic compounds at low temperatures (< 450 ℃) with high efficiency (> 95%). Although many noble metal catalytic materials are well established, they are expensive and hazardous. Herein, highly active and low-cost Cu-Mn bimetallic catalysts were prepared using a simple and facile synthesis method involving the co-precipitation of Cu and Mn precursors. The synthesis of the catalyst was optimized by controlling the composition ratio of Cu and Mn. The optimized catalyst exhibited a large surface area of 230.8 m2/g with a mesoporous structure. To demonstrate the catalytic performance, the Cu-Mn catalyst was tested for the oxidation reaction of ethyl acetate, showing a high conversion efficiency of 100% at a low temperature of 250 ℃.

최근 촉매 소각 공정은 휘발성 유기 화합물을 저온(< 450 ℃)에서 고효율(> 95%)로 산화 및 분해하기 위해 상당한 주목을 받고 있다. 많은 귀금속 촉매 물질이 잘 연구되어 사용되고 있으나 단가가 비싸고 위험하다. 본연구에서는 Cu와 Mn 전구체의 공침법을 활용하여 간단하고 손쉬운 합성 방법을 개발함으로써 고활성 및 저비용의 Cu-Mn 바이메탈 촉매를 제조하였다. 촉매 합성은 Cu와 Mn의 조성비를 조절하여 최적화하였다. 최적화된 촉매는 메조포러스 구조로 230.8 m2/g의 넓은 표면적을 나타냈다. 촉매 성능을 입증하기 위해 에틸 아세테이트의 산화 반응에 대해 Cu-Mn 촉매를 테스트했으며, 250 ℃의 저온에서 100%의 높은 전환 효율을 나타내었다.

Keywords

Acknowledgement

This work was supported by the Korea Research Institute of Chemical Technology (KRICT) core project (SS2242-10), and supported by a cooperative project as a "Basic project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science and ICT of Korea".

References

  1. M. Luo, Y. Cheng, X. Peng, and W. Pan, Copper modified manganese oxide with tunnel structure as efficient catalyst for low-temperature catalytic combustion of toluene, Chem. Eng. J., 369, 758-765 (2019). https://doi.org/10.1016/j.cej.2019.03.056
  2. B. D. Napruszewska, A. Michalik, A. Walczyk, D. Duraczyeska, R. Dula, W. Rojek, L. Litynska-Dobrzynska, K. Bahranowski, and E. M. Sewicka, Composites of laponite and Cu-Mn hopcalite-related mixed oxides prepared from inverse microemulsions as catalysts for total oxidation of toluene, Materials, 11, 1365-1379 (2018). https://doi.org/10.3390/ma11081365
  3. T. Biemelt, K. Wegner, J. Teichert, and S. Kaskel, Microemulsion flame pyrolysis for hopcalite nanoparticle synthesis: a new concept for catalyst preparation, Chem. Commun., 15, 5872-5875 (2015).
  4. S. Dey and G. C. Dhal, Synthesis of hopcalite catalyst by various methods for improved catalytic conversion of carbon monoxide, Mater. Sci. Technol., 3, 377-389 (2020).
  5. S. Said, S. Mikhail, and M. Riad, Recent processes for the production of alumina nano-particles, Mater. Sci. Technol., 3, 344-363 (2020).
  6. M. Bannai, A. Houkabe, M. Furukawa, T. Kashiwagi, A. Akisawa, T. Yoshida, and H. Yamada, Development of efficiency-enhanced cogeneration system utilizing high-temperature exaust-gas from a regenerative thermal oxidizer for waste volatile-organic-compound gases, Appl. Energy, 83, 929-942 (2006). https://doi.org/10.1016/j.apenergy.2005.10.005
  7. J. R. Hart, Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from catalytic and thermal oxidizers burning dilute chlorinated vapors, Chemosphere, 54, 1539-1547 (2004). https://doi.org/10.1016/j.chemosphere.2003.10.017
  8. H. Bai, Z. Wang, J. Zhang, J. Wu, Y. Yue, Q. Liu, and G. Qian, Synthesis of a perovskite-type catalyst from Cr electroplating sludge for effective catalytic oxidization of VOC, J. Environ. Manage., 294, 113025-113031 (2021). https://doi.org/10.1016/j.jenvman.2021.113025
  9. S. Dey and N. S. Mehta, To optimized various parameters of hopcalite catalysts in the synthetic processes for low temperature CO oxidation, Appl. Energy Combust. Sci., 6, 100031-100042 (2021).
  10. Y. H. Yap, M. S. W. Lim, Z. Y. Lee, K. C. Lai, M. A. Jamaal, F. H. Wong, H. K. Ng, S. S. Lim, and T. J. Tiong, Effects of sonication on co-precipitation synthesis and activity of copper manganese oxide catalyst to remove methane and Sulphur dioxide gases, Ultrason. Sonochem., 40, 57-67 (2018). https://doi.org/10.1016/j.ultsonch.2017.06.032
  11. S. Dey and G. C. Dhal, Deactivation and regeneration of hopcalite catalyst for carbon monoxide oxidation: a review, Mater. Today Chem., 14, 100180-100191 (2019). https://doi.org/10.1016/j.mtchem.2019.07.002
  12. S. Dey and N. S. Mehta, Influence the performances of hopcalite catalysts by the addition of gold nanoparticle for low temperature CO oxidation, Cleaner Eng. Technol., 4, 100171-100181 (2021). https://doi.org/10.1016/j.clet.2021.100171
  13. Y. Xu, Z. Qu, Y. Ren, and C. Dong, Enhancement of toluene oxidation performance over Cu-Mn composite oxides by regulating oxygen vacancy, Appl. Surf. Sci., 560 149983-149994 (2021). https://doi.org/10.1016/j.apsusc.2021.149983
  14. J. Kim, Y. H. Min, N. Lee, E. Cho, K. Y. Kim, G. Jeong, S. K. Moon, M. Joo, D. B. Kim, J. Kim, S.-Y. Kim, Y. Kim, J. Oh, and S. Sato, In situ spectroscopic and computational studies on a MnO2-CuO catalyst for use in volatile organic compound decomposition, ACS Omega, 2, 7424-7432 (2017). https://doi.org/10.1021/acsomega.7b00962
  15. H. Lin, D. Chen, H. Liu, X. Zou, and T. Chen, Effect of MnO2 crystalline structure on the catalytic oxidation of formaldehyde, Aerosol. Air Qual. Res., 17, 1011-1020 (2017). https://doi.org/10.4209/aaqr.2017.01.0013
  16. M. S. Lee, S.-I. Kim, M. Lee, B. Ye, T. Kim, H.-D. Kim, J. W. Lee, and D. H. Lee, Effect of catalyst crystallinity on V-based selective catalytic reduction with ammonia, Nanomaterials, 11, 1452-1463 (2021). https://doi.org/10.3390/nano11061452