• 제목/요약/키워드: Metal oxide material

검색결과 676건 처리시간 0.031초

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF

금속산화물을 포함한 변성폴리실록산/금속 복합체의 전기 전도성 연구 (Study on the Electrical Conductivity in Polysiloxane/Metal Composite Containing Metal Oxide)

  • 임현구;김주헌
    • 공업화학
    • /
    • 제20권3호
    • /
    • pp.307-312
    • /
    • 2009
  • 폴리실록산/금속 복합체 내에서의 금속입자의 분산성에 영향을 파악하기 위하여 금속산화물을 배위결합으로 가지고 있는 불록공중합체 형태의 변성 폴리실록산을 합성하였다. 합성된 폴리실록산과 금속입자와의 복합체 제조를 통하여 금속입자의 고분자상 분산상태를 확인하였으며 그 결과 금속산화물의 도입이 복합체 내 금속입자의 분산성에 영향을 미침을 확인하였다. 입자의 분산성과 변성폴리실록산에 도입된 금속산화물의 양적 관계 해석을 위하여 다양한 몰분율을 가지는 변성폴리실록산을 합성하였으며 복합체를 제조하였으며, 몰분율 변화에 따른 복합체에서의 분산성 향상을 파악하기 위하여 복합체의 전기전도성을 측정하여 그 결과를 percolation threshold 이론에 따라 해석하였다. 그 결과 금속산화물의 도입된 양이 많을수록 전도성의 임계농도가 낮아짐을 확인할 수 있으며 이를 통해 변성실록산 내 금속산화물의 몰분율의 증가가 입자의 분산성에 미치는 영향을 해석하였다.

급속응고한 Ag-Sn-In 합금의 미세조직에 미치는 Misch Metal의 영향 (The Effect of Misch Metal on the Microstructure of Rapidly solidified Ag-Sn-In Alloys)

  • 장대정;남태운
    • 한국전기전자재료학회논문지
    • /
    • 제20권6호
    • /
    • pp.561-565
    • /
    • 2007
  • Because of a good wear resistance and a stable contact resistance, Ag-CdO is widely used as electrical contact material. But, the Cd-oxide mainly exists as a coarse particle and adversely affected to environment. As a reason, $Ag-SnO_2$ alloy has been developed. The Sn-oxide maintains stable and fine particle even at high temperature. In order to investigate the effect of Misch metal (Mm) additional that affects the formation of the oxide and the formation of fine matrix Ag, we studied the microstructures and properties of Ag-Sn-In(-Mm) material fabricated by rapid solidification process. The experimental procedure were melting using high frequency induction, melt spinning, and internal oxidation. The Mm addition makes Ag matrix more fine than no Mm addition. The reason is that the addition of Misch metal decreased a latent heat of fusion of alloy, as a result the rapid solidification effect of alloy is increased. The maximum hardness shows at 0.3 wt%Mm. after that the hardness is decreased until 0.4 wt% Mm, but still larger than no Mm addition alloy. At 0.5 wt% Mm alloy, the precipitation of Misch metal causes a decrease of hardness than no Mm addition alloy.

알루미늄 기반 Oxide/Metal/Oxide 구조의 투명전극 적용성 기초 연구 (Aluminum Based Oxide/Metal/Oxide Structures for the Application in Transparent Electrodes)

  • 김대균;최두호
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.481-485
    • /
    • 2018
  • In this study, oxide/metal/oxide-type transparent electrodes based on Al and ZnO were investigated. Thin films of these materials were sputter-deposited at room temperature. To evaluate the thickness dependence of the oxide layers, the top and bottom ZnO layers were varied in the range of 5~80 nm and 2.5~20 nm, respectively. When the thicknesses of the top and bottom ZnO layers were fixed at 30 nm and 2.5 nm, a maximum transmitance of 66% and sheet resistance of $16.5{\Omega}/{\square}$ were achieved, which is significantly improved compared with the Al layer without top and bottom ZnO layers showing a maximum transmitance of 44.3% and sheet resistance of $44{\Omega}/{\square}$.

플라즈몬 금속 산화물 나노입자를 활용한 차세대 전기변색 소자 개발 동향 (Recent Progress of Developing Next-Generation Electrochromic Windows from Plasmonic Metal Oxide Nanocrystals)

  • 나장한;김성빈;허성연
    • 한국전기전자재료학회논문지
    • /
    • 제37권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Direct use of sunlight through the glass windows is an efficient way to reduce the energy consumption related to the heating, cooling, and lighting. Introduction of near-infrared modulating properties through colloidal doped metal oxide nanocrystals into the classical electrochromic materials accelerates the development of next-generation electrochromic devices. There has been a steady enhancement in the performance of electrochromic devices, necessitating a review of the recent progress in next-generation electrochromic devices employing doped metal oxide nanocrystals. This review provides an overview of the current developments in next-generation electrochromic smart windows utilizing colloidal doped metal oxide nanocrystals, with a focus on the key factors for achieving these advanced windows. Colloidal doped metal oxide nanocrystals are a crucial component in realizing and bringing to market the next generation of electrochromic windows, though further research and development are still required in this regard.

Metal-Oxide-Semiconductor 광전소자 (Metal-Oxide-Semiconductor Photoelectric Devices)

  • 강길모;윤주형;박윤창;김준동
    • 한국전기전자재료학회논문지
    • /
    • 제27권5호
    • /
    • pp.276-281
    • /
    • 2014
  • A high-responsive Schottky device has been achieved by forming a thin metal deposition on a Si substrate. Two-different metals of Ni and Ag were used as a Schottky metal contact with a thickness about 10 nm. The barrier height formation between metal and Si determines the rectifying current profiles. Ag-embedding Schottky device gave an extremely high response of 17,881 at a wavelength of 900 nm. An efficient design of Schottky device may applied for photoelectric devices, including photodetectors and solar cells.

이온선 스퍼터 증착법에 의하여 제조된 CrOx의 전기적 특성 (The Electrical Characteristics of Chromium Oxide Film Produced by Son Beam Sputter Deposition)

  • 조남제;이규용
    • 한국전기전자재료학회논문지
    • /
    • 제15권6호
    • /
    • pp.518-523
    • /
    • 2002
  • The influences of ion beam energy and reactive oxygen partial pressure on the physical and crystallographic characteristics of transition metal oxide compound(CrOx) film were studied in this paper. Chromium oxide films were deposited onto a cover-glass using ion Beam Sputter Deposition(IBSD) technique according to the various processing parameters. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. According to the XRD, XPS and resistivity results, the deposited films were the cermet type films which had crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increment of the ion beam energy during the deposition process led to decreasing of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.

금속 산화물 반도체 나노구조의 합성과 가스 감응 특성 (Synthesis of Metal Oxide Semiconductor Nanostructures and Their Gas Sensing Properties)

  • 최권일;이종흔
    • 한국전기전자재료학회논문지
    • /
    • 제25권8호
    • /
    • pp.632-638
    • /
    • 2012
  • The prepartion of various metal oxide nanostructures via hydrothermal method, hydrolysis, thermal evaporation and electrospinning and their applications to chemoresistive sensors have been investigated. Hierarchical and hollow nanostructures prepared by hydrothermal method and hydrolysis showed the high response and fast responding kinetics on account of their high gas accessibility. Thermal evaporation and electrospinning provide the facile routes to prepare catalyst-loaded oxide nanowires and nanofibers, respectively. The loading of noble metal and metal oxide catalyst were effective to achieve rapid response/recovery and selective gas detection.

온도에 의한 산화물 박막트랜지스터의 문턱전압 이동 시뮬레이션 방안 (Simulation Method of Temperature Dependent Threshold Voltage Shift in Metal Oxide Thin-film Transistors)

  • 권세용;정태호
    • 한국전기전자재료학회논문지
    • /
    • 제28권3호
    • /
    • pp.154-159
    • /
    • 2015
  • In this paper, we propose a numerical method to model temperature dependent threshold voltage shift observed in metal oxide thin-film transistors (TFTs). The proposed model is then implemented in AIM-SPICE circuit simulation tool. The proposed method consists of modeling the well-known stretched-exponential time dependent threshold voltage shift and their temperature dependent coefficients. The outputs from AIM-SPICE tool and the stretched-exponential model at different temperatures in the literature are compared and they show a good agreement. Since metal oxide TFTs are the promising candidate for flat panel displays, the proposed method will be a good stepping stone to help enhance reliability of fast-evolving display circuits.

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran;Song, Sun-Ju;Kim, Ho-Sung
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.1-20
    • /
    • 2018
  • Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.