• Title/Summary/Keyword: Metal oxide material

Search Result 676, Processing Time 0.026 seconds

Conducting Metal Oxide Interdigitated Electrodes for Semiconducting Metal Oxide Gas Sensors

  • Shim, Young-Seok;Moon, Hi-Gyu;Kim, Do-Hong;Jang, Ho-Won;Yoon, Young-Soo;Yoon, Soek-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.65-65
    • /
    • 2011
  • We report the application of conducting metal oxide electrodes for semiconducting metal oxide gas sensors. Pt interdigitated electrodes have been commonly used for metal oxide gas sensor because of the low resistivity, excellent thermal and chemical stability of Pt. However, the high cost of Pt is an obstacle for the wide use of metal oxide gas sensors compared with its counterpart electrochemical gas sensors. Meanwhile, relatively low-cost conducting metal oxides are widely being used for light-emitting diodes, flat panel displays, solar cell and etc. In this work, we have fabricated $WO_3$ and $SnO_2$ thin film gas sensors using interdigitated electrodes of conducting metal oxides. Thin film gas sensors based on conducting metal oxides exhibited superior gas sensing properties than those using Pt interdigitated electrodes. The result was attributed to the low contact resistance between the conducting metal oxide and the sensing material. Consequently, we demonstrated the feasibility of conducting metal oxide interdigitated electrodes for novel gas sensors.

  • PDF

Study on the Electrical Conductivity in Polysiloxane/Metal Composite Containing Metal Oxide (금속산화물을 포함한 변성폴리실록산/금속 복합체의 전기 전도성 연구)

  • Im, Hyungu;Kim, Jooheon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.307-312
    • /
    • 2009
  • The block-co-polymer type thermosetting polysiloxane coordinated with metal oxide was synthesized to investigate the effect of metal oxide on the dispersity of metal powder in the polysiloxane/metal composite material. The metal powder in the polysiloxane/metal composite materials is better dispersed with metal oxide complex polysiloxane than the case without metal oxide. To understand the effect of quantities of metal oxide on the polysiloxane chain, the various polysiloxanes with different ratios of block unit were synthesized. Electrical conductivity was interpreted by percolation threshold theory to understand the dispersity of dense composite. The behavior of conductivity was in good agreement with theoretical value. The critical value was decreased as the quantities of metal oxide are increased. As a result, as the metal oxide increased on the polymer chain, the dispersity of metal filler was increased.

The Effect of Misch Metal on the Microstructure of Rapidly solidified Ag-Sn-In Alloys (급속응고한 Ag-Sn-In 합금의 미세조직에 미치는 Misch Metal의 영향)

  • Chang, Dae-Jung;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.6
    • /
    • pp.561-565
    • /
    • 2007
  • Because of a good wear resistance and a stable contact resistance, Ag-CdO is widely used as electrical contact material. But, the Cd-oxide mainly exists as a coarse particle and adversely affected to environment. As a reason, $Ag-SnO_2$ alloy has been developed. The Sn-oxide maintains stable and fine particle even at high temperature. In order to investigate the effect of Misch metal (Mm) additional that affects the formation of the oxide and the formation of fine matrix Ag, we studied the microstructures and properties of Ag-Sn-In(-Mm) material fabricated by rapid solidification process. The experimental procedure were melting using high frequency induction, melt spinning, and internal oxidation. The Mm addition makes Ag matrix more fine than no Mm addition. The reason is that the addition of Misch metal decreased a latent heat of fusion of alloy, as a result the rapid solidification effect of alloy is increased. The maximum hardness shows at 0.3 wt%Mm. after that the hardness is decreased until 0.4 wt% Mm, but still larger than no Mm addition alloy. At 0.5 wt% Mm alloy, the precipitation of Misch metal causes a decrease of hardness than no Mm addition alloy.

Aluminum Based Oxide/Metal/Oxide Structures for the Application in Transparent Electrodes (알루미늄 기반 Oxide/Metal/Oxide 구조의 투명전극 적용성 기초 연구)

  • Kim, Daekyun;Choi, Dooho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.481-485
    • /
    • 2018
  • In this study, oxide/metal/oxide-type transparent electrodes based on Al and ZnO were investigated. Thin films of these materials were sputter-deposited at room temperature. To evaluate the thickness dependence of the oxide layers, the top and bottom ZnO layers were varied in the range of 5~80 nm and 2.5~20 nm, respectively. When the thicknesses of the top and bottom ZnO layers were fixed at 30 nm and 2.5 nm, a maximum transmitance of 66% and sheet resistance of $16.5{\Omega}/{\square}$ were achieved, which is significantly improved compared with the Al layer without top and bottom ZnO layers showing a maximum transmitance of 44.3% and sheet resistance of $44{\Omega}/{\square}$.

Recent Progress of Developing Next-Generation Electrochromic Windows from Plasmonic Metal Oxide Nanocrystals (플라즈몬 금속 산화물 나노입자를 활용한 차세대 전기변색 소자 개발 동향)

  • Janghan Na;Sungbin Kim;Sungyeon Heo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Direct use of sunlight through the glass windows is an efficient way to reduce the energy consumption related to the heating, cooling, and lighting. Introduction of near-infrared modulating properties through colloidal doped metal oxide nanocrystals into the classical electrochromic materials accelerates the development of next-generation electrochromic devices. There has been a steady enhancement in the performance of electrochromic devices, necessitating a review of the recent progress in next-generation electrochromic devices employing doped metal oxide nanocrystals. This review provides an overview of the current developments in next-generation electrochromic smart windows utilizing colloidal doped metal oxide nanocrystals, with a focus on the key factors for achieving these advanced windows. Colloidal doped metal oxide nanocrystals are a crucial component in realizing and bringing to market the next generation of electrochromic windows, though further research and development are still required in this regard.

Metal-Oxide-Semiconductor Photoelectric Devices (Metal-Oxide-Semiconductor 광전소자)

  • Kang, Kilmo;Yun, Ju-Hyung;Park, Yun Chang;Kim, Joondong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.276-281
    • /
    • 2014
  • A high-responsive Schottky device has been achieved by forming a thin metal deposition on a Si substrate. Two-different metals of Ni and Ag were used as a Schottky metal contact with a thickness about 10 nm. The barrier height formation between metal and Si determines the rectifying current profiles. Ag-embedding Schottky device gave an extremely high response of 17,881 at a wavelength of 900 nm. An efficient design of Schottky device may applied for photoelectric devices, including photodetectors and solar cells.

The Electrical Characteristics of Chromium Oxide Film Produced by Son Beam Sputter Deposition (이온선 스퍼터 증착법에 의하여 제조된 CrOx의 전기적 특성)

  • 조남제;이규용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.518-523
    • /
    • 2002
  • The influences of ion beam energy and reactive oxygen partial pressure on the physical and crystallographic characteristics of transition metal oxide compound(CrOx) film were studied in this paper. Chromium oxide films were deposited onto a cover-glass using ion Beam Sputter Deposition(IBSD) technique according to the various processing parameters. Crystallinity and grain size of as-deposited films were analyzed using XRD analysis. Thickness and Resistivity of the films were measured by $\alpha$-step and 4-point probe measurement. According to the XRD, XPS and resistivity results, the deposited films were the cermet type films which had crystal structure including amorphous oxide(a-oxide) phase and metal Cr phase simultaneously. The increment of the ion beam energy during the deposition process led to decreasing of metal Cr grain size and the rapid change of resistivity above the critical $O_2$ partial pressure.

Synthesis of Metal Oxide Semiconductor Nanostructures and Their Gas Sensing Properties (금속 산화물 반도체 나노구조의 합성과 가스 감응 특성)

  • Choi, Kwon-Il;Lee, Jong-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.632-638
    • /
    • 2012
  • The prepartion of various metal oxide nanostructures via hydrothermal method, hydrolysis, thermal evaporation and electrospinning and their applications to chemoresistive sensors have been investigated. Hierarchical and hollow nanostructures prepared by hydrothermal method and hydrolysis showed the high response and fast responding kinetics on account of their high gas accessibility. Thermal evaporation and electrospinning provide the facile routes to prepare catalyst-loaded oxide nanowires and nanofibers, respectively. The loading of noble metal and metal oxide catalyst were effective to achieve rapid response/recovery and selective gas detection.

Simulation Method of Temperature Dependent Threshold Voltage Shift in Metal Oxide Thin-film Transistors (온도에 의한 산화물 박막트랜지스터의 문턱전압 이동 시뮬레이션 방안)

  • Kwon, Seyong;Jung, Taeho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.154-159
    • /
    • 2015
  • In this paper, we propose a numerical method to model temperature dependent threshold voltage shift observed in metal oxide thin-film transistors (TFTs). The proposed model is then implemented in AIM-SPICE circuit simulation tool. The proposed method consists of modeling the well-known stretched-exponential time dependent threshold voltage shift and their temperature dependent coefficients. The outputs from AIM-SPICE tool and the stretched-exponential model at different temperatures in the literature are compared and they show a good agreement. Since metal oxide TFTs are the promising candidate for flat panel displays, the proposed method will be a good stepping stone to help enhance reliability of fast-evolving display circuits.

Enhancing Gas Response Characteristics of Mixed Metal Oxide Gas Sensors

  • Balamurugan, Chandran;Song, Sun-Ju;Kim, Ho-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • Semiconducting nanomaterials have attracted considerable interest in recent years due to their high sensitivity, selectivity, and fast response time. In addition, for portable applications, they have low power consumption, lightweight, simple in operation, a low maintenance cost. Furthermore, it is easy to manufacture microelectronic sensor structures with metallic oxide sensitive thin layers. The use of semiconducting metal oxides to develop highly sensitive chemiresistive sensing systems remains an important scientific challenge in the field of gas sensing. According to the sensing mechanisms of gas sensors, the overall sensor conductance is determined by surface reactions and the charge transfer processes between the adsorbed species and the sensing material. The primary goal of the present study is to explore the possibility of using semiconducting mixed metal oxide nanostructure as a potential sensor material for selective gases.