• Title/Summary/Keyword: Metal compounds

Search Result 779, Processing Time 0.028 seconds

The Effects of Metal Compounds on the Biosynthesis of the Galactolipid and Composition of Fatty Acids in Escherichia coli and Bacillus subtilis (Escherichia coli와 Bacillus subtilis의 당지질 생합성과 지방산 조성에 미치는 금속산화물의 효과)

  • Lee, So Yeon;Yoon, Hyo Sook;Choi, Won Chang;Lee, Chong Sam
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.2
    • /
    • pp.12-23
    • /
    • 1997
  • The biosynthesis of galactolipid, galactose and the fatty acid composition in E. cdi and B. subtills treated with potassium dichromate(PD, 500 ppm, 500 ppm), potassium chromate(PC, 500 ppm, 500 ppm), cobalt chloride(CC, 100 ppm, 10 ppm) and methylmercuric chloride(MC, 100 ppm, 10 ppm) during the culture were analyzed to compare with the control. The growth rate of cells, the contents of monogalactosyldiglyceride(MGDG), digalactosyldiglyceride(DGDG) and total lipid in the metal compound treatments were lower as compared with the control. And too, the contents of galactose utilized for the biosynthesis of galactolipids in these strains in the various metal compounds treatments were inhibited. The fatty acids used for the MGDG and DGDG formation in E. coli and B. subtills treated with each metal compounds during the culture were showed to the variant compositional change.

  • PDF

Structural Analysis of Low Temperature Processed Schottky Contacts to n-InGaAs (저온공정 n-InGaAs Schottky 접합의 구조적 특성)

  • 이홍주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.7
    • /
    • pp.533-538
    • /
    • 2001
  • The barrier height is found to increase from 0.25 to 0.690 eV for Schottky contacts on n-InGaAs using deposition of Ag on a substrate cooled to 77K(LT). Surface analysis leads to an interface model for the LT diode in which there are oxide compounds of In:O and As:O between the metal and semiconductor, leading to behavior as a metal-insulator-semiconductor diode. The metal film deposited t LT has a finer and more uniform structure, as revealed by scanning electron microscopy and in situ metal layer resistance measurement. This increased uniformity is an additional reason for the barrier height improvement. In contrast, the diodes formed at room temperature exhibit poorer performance due to an unpassivated surface and non-uniform metal coverage on a microscopic level.

  • PDF

Effect of Processing Additives on Vulcanization and Properties of EPDM Rubber (EPDM 고무의 첨가제에 따른 가류 및 물성에 미치는 영향 연구)

  • Lee, Soo;Bae, Joung Su
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.173-185
    • /
    • 2018
  • Effects of three different types of dispersions and flow improving additives composed with fatty acid esters, fatty acid metal salts and amide compound on the vulcanization and the mechanical properties properties of rubber compounds of EPDM and carbon black as fillers. were investigated using Mooney viscometer, moving die rheometer, hardness tester, and universal test machine. The aging characteristics of vulcanized EPDM compounds were also investigated. The Mooney viscosity measured at $125^{\circ}C$ showed a tendency to decrease in the order of amide type> metal salt type > ester type additive. Scorch time showed little or no difference with the addition of ester or metal salt type additives, but the amide type additive shortened a scorch time more than one minute. Rheological measurement data obtained at $160^{\circ}C$ showed that the vulcanization time was faster for metal salt type and amide type additive systems. Delta torque values of EPDM compound increased with metal salt type and amide type additives, but slightly decreased with ester type additive. The tensile strength of the EPDM compound was greatly improved when an ester type additive was added, but the amide type or metal salt type additive had no significant effect. The elongation was significantly improved for metal salt type additive, while the rest were not significantly affected. The tear strength of the EPDM compounds increased with the addition of all kinds of additives, and it increased remarkably in the case of metal salt type additive. Hardness of the EPDM compounds was nearly same value regardless of additive types. The thermal aging of the EPDM blend at $100^{\circ}C$ for 24 h showed little change in the case of metal salt type or amide type additive, but the elongation tends to decrease by 10-20% for all EPDM compounds containing additives.

A Convenient Allylation of 1,n-Dicarbonyl Compounds Using Organoindium Reagents

  • Lee, Pil Ho;DongSeo, Mun;Lee, Gu Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1380-1384
    • /
    • 2001
  • The chemoselective reactions of 1,n-dicarbonyl compounds with allyl halides using indium metal were investigated. $\alpha-Ketoesters$ such as ethyl pyruvate, ethyl 3-methyl-2-oxobutyrate and ethyl benzoylformate reacted with a variety of allyl halides i n the presence of indium to afford hydroxy unsaturated carbonyl compounds in good to excellent yields in MeOH/HCl at $25^{\circ}C.$ For the allyl bromide, the presence of various substituents at the $\alpha$ or $\gamma$ position exhibited little effects on both the reaction rates and yields. Ethyl acetoacetate or ethyl levulinate was treated with allylindium reagent to give hydroxy unsaturated carbonyl compounds in good yield. These results mean that both reactivity and selectivity are independent of the distance between carbonyl groups. 2,3-Butanedione or 1-phenyl-1,2-propanedione reacted with allylindium to produce monoallylation product as major compound.

A Study on the Adsorption of Heavy Metals by Chitosan Obtained from Shrimp Shell (새우껍질로부터 얻어진 키토산을 이용한 중금속 흡착에 관한 연구)

  • Cha, Wool-Suk;Kim, Jong-Soo;Cho, Bae-Sick;Kim, Chong-Kyun
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.504-508
    • /
    • 1998
  • Experimental investigation on the adsorption of heavy metal confounds as $Fe^{2+}$, $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, $Cr^{6+}$ using chitosan was carried out. The adsorption of each component of heavy metal compounds was measured by Atomic Absorption apparatus. The range of optimum pH for the removal rates of heavy metal compounds was found pH 7.0~9.0. The maximum time for the removal rate of $Fe^{2+}$ was observed about 15 min. The maximum time for the removal raters of $Cu^{2+}$, $Mn^{2+}$, $Zn^{2+}$, $Ni^{2+}$, $Pb^{2+}$, $Cd^{2+}$, and $Cr^{6+}$ was observed about 25 min. The adsorption rates of heavy metal compounds by chitosan have been found in the order of $Fe^{2+}>Cu^{2+}>Mn^{2+}>Zn^{2+}>Ni^{2+}>Pb^{2+}>Cd^{2+}>Cr^{6+}$.

  • PDF

Fabrication of 1D Metal Oxide Nanostructures Using Glancing Angle Deposition for High Performance Gas Sensors

  • Suh, Jun Min;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.228-234
    • /
    • 2017
  • Gas sensors based on metal-oxide-semiconductors are predominantly used in numerous applications including monitoring indoor air quality and detecting harmful substances such as volatile organic compounds. Nanostructures, e.g., nanoparticles, nanotubes, nanodomes, or nanofibers, have been widely utilized to improve the gas sensing properties of metal-oxide-semiconductors by increasing the effective surface area participating in the surface reaction with target gas molecules. Recently, 1-dimensional (1D) metal oxide nanostructures fabricated using glancing angle deposition (GAD) method with e-beam evaporation have been widely employed to increase the surface-to-volume ratio significantly with large-area uniformity and reproducibility, leading to promising gas sensing properties. Herein, we provide a brief overview of 1D metal oxide nanostructures fabricated using GAD and their gas sensing properties in terms of fabrication methods, morphologies, and additives. Moreover, the gas sensing mechanisms and perspectives are presented.

Analysis of the Effect on the Performance of Ceramic Metal Halide Lamp by the Loss of Elements that have been Filled in Arc Tube (아크튜브내의 구성물 손실이 세라믹 메탈 핼라이드 램프의 특성에 미치는 영향분석)

  • Jang, Hyeok-Jin;Yang, Jong-Kyung;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2446-2452
    • /
    • 2009
  • A Ceramic Metal-halide lamp is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The maximum visible efficacy of a Ceramic Metal Halide lamp, under the constant of a white light source, is predicted to be about 450lm/W. This is controlled principally by the chemical fill chosen for a particular lamp. Current these lamps achieve 130lm/W and these life time are the maximum 16,000[hr]. So factors of performance lower are necessary to improve lamp performance. In this paper, we analyzed factors of performance lower by accelerated deterioration test. The lamp was operated with short duration turn-on/turn-off procedure to enhance the effect due to electrode sputtering during lamp ignition. The tested lamp that was operated with a longer turn-on/off(20/20 minutes) showed blackening, changed distance between electrodes and lowered color rendering & color temperature by losses of Dy at 421.18nm, I at 511nm, T1 at 535nm and Na at 588nm compared with the new lamp.