DOI QR코드

DOI QR Code

Effect of Processing Additives on Vulcanization and Properties of EPDM Rubber

EPDM 고무의 첨가제에 따른 가류 및 물성에 미치는 영향 연구

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Bae, Joung Su (R & D Center, Dongeun Chemical Co)
  • 이수 (창원대학교 토목환경화공융합공학부) ;
  • 배정수 ((주)동은화학 기술연구소)
  • Received : 2018.02.15
  • Accepted : 2018.03.16
  • Published : 2018.03.30

Abstract

Effects of three different types of dispersions and flow improving additives composed with fatty acid esters, fatty acid metal salts and amide compound on the vulcanization and the mechanical properties properties of rubber compounds of EPDM and carbon black as fillers. were investigated using Mooney viscometer, moving die rheometer, hardness tester, and universal test machine. The aging characteristics of vulcanized EPDM compounds were also investigated. The Mooney viscosity measured at $125^{\circ}C$ showed a tendency to decrease in the order of amide type> metal salt type > ester type additive. Scorch time showed little or no difference with the addition of ester or metal salt type additives, but the amide type additive shortened a scorch time more than one minute. Rheological measurement data obtained at $160^{\circ}C$ showed that the vulcanization time was faster for metal salt type and amide type additive systems. Delta torque values of EPDM compound increased with metal salt type and amide type additives, but slightly decreased with ester type additive. The tensile strength of the EPDM compound was greatly improved when an ester type additive was added, but the amide type or metal salt type additive had no significant effect. The elongation was significantly improved for metal salt type additive, while the rest were not significantly affected. The tear strength of the EPDM compounds increased with the addition of all kinds of additives, and it increased remarkably in the case of metal salt type additive. Hardness of the EPDM compounds was nearly same value regardless of additive types. The thermal aging of the EPDM blend at $100^{\circ}C$ for 24 h showed little change in the case of metal salt type or amide type additive, but the elongation tends to decrease by 10-20% for all EPDM compounds containing additives.

화학 관능기가 다른 지방산 에스터계, 지방산 금속염 및 아마이드계 분산 및 흐름개선 첨가제가 EPDM과 카본블랙을 충전제로 사용한 고무 배합물의 가류 특성과 가류된 고무 배합물의 기계적 물성 및 노화특성에 미치는 영향을 무니점도계, 레오미터, 경도계, 만능재료시험기 등을 이용하여 측정하였다. $125^{\circ}C$에서 측정된 무니점도는 아마이드계 > 금속염계 > 에스터계 첨가제의 순으로 감소하는 경향을 보였으며, 스코치시간은 에스터계와 금속염계 첨가제는 첨가 유무에 따라 거의 차이가 없거나 조금 늦어지며, 아마이드계 첨가제는 1분 이상 빨라졌다. $160^{\circ}C$에서의 레오미터 측정 결과 가류시간은 금속염계와 아마이드계 첨가제의 경우는 가류반응이 빨리 진행되었다. 델타토크 값은 금속염계와 아마이드계 첨가제가 있는 경우 전반적으로 증가하였으나, 에스터계 첨가제가 있는 경우는 약간 감소하였다. EPDM 배합물의 인장강도는 에스터계 첨가제가 첨가된 경우 크게 향상되었으며, 아마이드계와 금속염계 첨가제의 경우는 큰 영향이 없었다. 신율의 경우는 금속염계 첨가제의 경우 크게 향상되었으며, 나머지의 경우는 큰 영향이 없었다. 인열강도는 첨가제의 첨가에 따라 전반적으로 상승하였으며 금속염계 첨가제의 경우에서 확연히 상승하였으며 경도는 첨가제의 종류와 상관없이 유사한 값을 나타내었다. $100^{\circ}C$에서 24시간 열노화시킨 EPDM 배합물은 금속염계와 아마이드계 첨가제의 경우는 거의 변화가 없었으며 신율의 변화는 첨가제를 함유한 모든 EPDM 배합물이 10-20% 정도 감소하는 경향을 보였다.

Keywords

References

  1. P. E. Hurley, “History of synthetic rubber,” J. of Macromol. Sci., Part A-Chemistry, Vol. 15, No. 7, pp. 1289-1302, (2006).
  2. Matthan RK, Rubber engineering p. 103, McGraw-Hill, N.Y., USA, (1998).
  3. Mark JE. Erman B, Roland M, The Science and Technology of Rubber: 9. The Science of Rubber Compounding, pp. 417-470, Academic Press, (2013).
  4. Q. Liu, H. Zhang, X. Yan, “Preparation of high-performance damping materials based on carboxylated nitrile rubber: Effects of organic fillers,” Iranian Polym. J., Vol. 18, No. 5, pp. 401-413, (2009).
  5. D. H. Yin, Y. Zhang, Z. L. Peng, Y. X. Zhang, “Effect of fillers and additives on the properties of SBR vulcanizates,” J. Appl. Polym. Sci., Vol. 88, No. 3, pp. 775-782, (2003). https://doi.org/10.1002/app.11604
  6. S. B. Kwak, N. S. Choi, J. K. Kim, “Crosslink density measurement and thermal oxidative degradation analysis of a carbon black compounded EPDM rubber hose,” Composites Res., Vol. 22, No. 3, pp. 35-43, (2009).
  7. D. H. Kang and S. M. Kim, “Preparation and properties of polyorganosiloxane modified maleated EPDM/EPDM rubber vibration isolator,” Appl. Chem. Eng., Vol. 21, No. 5, pp. 581-585, (2010).
  8. S. S. Choi, K. J. Hwang, B. T. Kim, “Influence of bound polymer on cure characteristics of natural rubber compounds reinforced with different types of carbon blacks,” J. Appl. Polym. Sci., Vol. 98, No. 5, pp. 2282-2289, (2005). https://doi.org/10.1002/app.22287
  9. T. Sajjayanukul, P. Saeoui, and C. Sirisinha, “Experimental analysis of viscoelastic properties in carbon black-filled natural rubber compounds,” J. Appl. Polym. Sci., Vol. 97, No. 6, pp. 2197-2203, (2005). https://doi.org/10.1002/app.21855
  10. S. S. Choi, B. H. Park, H. Song, "Influence of filler type and content on properties of styrene-butadiene rubber (SBR) compound reinforced with carbon black or silica," Polym. Adv. Technol., Vol. 15, 122, (2004). https://doi.org/10.1002/pat.421
  11. S. S. Choi, "Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber," Polym. Adv. Technol., Vol. 13, No. 6, pp. Pages 466-474, (2002). https://doi.org/10.1002/pat.211
  12. P. Sae-oui, K. Suchiva, C. Sirisinha, W. Intiya, P. Yodjun, U. Thepsuwan, "Effects of Blend Ratio and SBR Type on Properties of Carbon Black-Filled and Silica-Filled SBR/BR Tire Tread Compounds," Adv. Mat. Sci. Eng., Vol. 2017, Article ID 2476101, 8 pages (2017).
  13. S. S. Park, S. G. Kil, B. M. Jang, K. C. Song, S. K. Kim, “Influence of Amine Base Dispersing Agent on Properties of Silica Filled Rubber Compounds,” Polymer Korea, Vol. 25, No. 4, pp. 503-511, (2001).
  14. E. H. Seo, G. H. Kim, D. Y. Kim, D. W. Lee, K. H. Seo, “Effect of Co-agent on Cure, Mechanical Properties of NBR Compounds in Peroxide System,” Elastomers and Composites, Vol. 52, No. 3, pp. 187-193, (2017).
  15. S. K. Bhattacharyya, B. S. Parmar, R. Mukhopadhyay, A. Bandyopadhyay, “Application of the resin derived from the native EUPHORBIA CADUCIFOLIA HAINES as multifunctional additive in filled natural rubber compounds,” Rubber Chem. Tech., Vol. 90, No. 3, pp. 429-444, (2017). https://doi.org/10.5254/rct.16.83775
  16. N. C. Baek, D. G. Lee, S. G. Juong, D. S. Heo, and J. C. Choi, "Rubber Materials and Processing Technology," p. 33, The Rubber Society of Korea, (1983).
  17. Y. W Chang, J. K. Mishra, S. K Kim, and D. K Kim, “Effect of supramolecular hydrogen bonded network on the properties, of maleated ethylene propylene diene rubber/maleated high density polyethylene blend based thermoplasticelastomer,” Mater Lett., Vol. 60, No. 25-26, pp. 3118-3121, (2006). https://doi.org/10.1016/j.matlet.2006.02.055
  18. Developing of Data Acquisition System of Rheometer for Plotting the Rheogram (Graphical User Interface) Available from: https://www.researchgate.net/Rheogram-curve-with-parameters266735667.
  19. A. Ciesielski, An Introduction to Rubber Technology, iSmithers Rapra Publishing, ISBN 1859571506, pp. 81-83, (1999).
  20. S. S. Park, "Influence of silica and ingredients on propertie of narural rubber compound," Ph. D. Dissertation, Chonnam National University, (2000).

Cited by

  1. Performance of bio-ethylene propylene diene monomer (bio-EPDM) foam with mixed chemical and encapsulated blowing agents vol.6, pp.None, 2019, https://doi.org/10.1186/s40691-019-0178-0
  2. Bio-EPDM/tungsten oxide nanocomposite foam with improved thermal storage and sea water resistance vol.7, pp.None, 2018, https://doi.org/10.1186/s40691-020-00219-4