• 제목/요약/키워드: Metal Plating Process

Search Result 127, Processing Time 0.03 seconds

A study on zinc phosphate conversion coatings on Mg alloys

  • Phuong, Nguyen Van;Lee, Kyuhwan;Chang, Doyon;Kim, Man;Lee, Sangyeoul;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.17-17
    • /
    • 2012
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings, are commonly applied to magnesium alloys in order to increase the corrosion resistance. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion resistance. In this study, zinc phosphate conversion coatings on various Mg alloys have been developed by selecting proper phosphating bath composition and concentration and by optimizing phosphating time, temperature. Morphology, coatings composition, corrosion resistance, adhesion and its formation and growth mechanism of the zinc phosphate conversion coatings were studied. Results have shown some attractive properties such as simplicity in operation, significantly increased corrosion protective property. However, adhesions between coatings and substrate and also between coatings and paint are still not satisfied. Resolving the problems and understanding the mechanism of phosphating process are targets of our study.

  • PDF

Embedded Inductors in MCM-D for RF Appliction (RF용 MCM-D 기판 내장형 인덕터)

  • 주철원;박성수;백규하;이희태;김성진;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.31-36
    • /
    • 2000
  • We developed embedded inductors in MCM-D substrate for RF applications. The increasing demand for high density packaging was the driving forces to the development of MCM-D technology. Most of these development efforts have been focused on high performance digital circuits. However, recently there is a great need fur mixed mode circuits with a combination of digital, analog and microwave devices. Mixed mode modules often have a large number of passive components that are connected to a small number of active devices. Integration of passive components into the high density MCM substrate becomes desirable to further reduce cost, size, and weight of electronic systems while improving their performance and reliability. The proposed MCM-D substrate was based on Cu/photosensitive BCB multilayer and Ti/Cu is used to form the interconnect layer. Seed metal was formed with 1000 $\AA$ Ti/3000 $\AA$ Cu by sputtering method and main metal was formed with 3 $\mu\textrm{m}$ Cu by electrical plating method. The multi-turn sprial inductors were designed in coplanar fashion. This paper describe the manufacturing process of integrated inductors in MCM-D substrate and the results of electrical performance test.

  • PDF

Brazing Adhesion Properties of Ag Coated W-Ag Electric Contact on the Cu Substrate (Ag 코팅한 W-Ag 전기접점/Cu 모재간의 브레이징 접합 특성)

  • Kang Hyun-Goo;Kang Yun-Sung;Lee Jai-Sung
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.18-24
    • /
    • 2006
  • The brazing adhesion properties of Ag coated W-Ag electric contact on the Cu substrate have been investigated in therms of microstructure, phase equilibrium and adhesion strength. Precoating of Ag layer ($3{\mu}m$ in thickness) on the $W-40\%Ag$ contact material was done by electro-plating method. Subsequently the brazing treatment was conducted by inserting BCuP-5 filler metal (Ag-Cu-P alloy) layer between Ag coated W-Ag and Cu substrate and annealing at $710^{\circ}C$ in $H_2$ atmosphere. The optimum brazing temperature of $710^{\circ}C$ was semi-empirically calculated on the basis of the Cu atomic diffusion profile in Ag layer of commercial electric contact produced by the same brazing process. As a mechanical test of the electric contact after brazing treatment the adhesion strength between the electric contact and Cu substrate was measured using Instron. The microstructure and phase equilibrium study revealed that the sound interlayer structure was formed by relatively low brazing treatment at $710^{\circ}C$. Thin Ag electro-plated layer precoated on the electric contact ($3{\mu}m$ in thickness) is thought to be enough for high adhesion strength arid sound microstructure in interface layer.

Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding (FeCo 자성 금속 중공형 섬유 고분자 복합재의 전자파 차폐 특성 연구)

  • Choi, Jae Ryung;Jung, Byung Mun;Choi, U Hyeok;Cho, Seung Chan;Park, Ka Hyun;Kim, Won-jung;Lee, Sang-Kwan;Lee, Sang Bok
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2015
  • Electromagnetic interference shielding composite with low density ($1.18g/cm^3$) was fabricated using electroless plated FeCo magnetic metal hollow fibers and ethylene propylene diene monomer (EPDM) polymer. Aspect ratio of the fibers were controlled and their hollow structure was obtained by heat treatment process. The FeCo hollow fibers were then mixed with EPDM to manufacture the composite. The higher aspect ratio of the magnetic metal hollow fibers resulted in high electromagnetic interference shielding effectiveness (30 dB) of the composite due to its low sheet resistance (30 ohm/sq). The enhanced electromagnetic interference shielding effectiveness was mainly attributed to the formation of conducting network over the percolation threshold by high aspect ratio of fibers as well as an increase of the reflection loss by impedance mismatch owing to low sheet resistance, absorption loss, and multiple internal reflections loss.

Fabrication of Master for a Spiral Pattern in the Order of 50nm (50nm급 불연속 나선형 패턴의 마스터 제작)

  • Oh, Seung-Hun;Choi, Doo-Sun;Je, Tae-Jin;Jeong, Myung-Yung;Yoo, Yeong-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.134-139
    • /
    • 2008
  • A spirally arrayed nano-pattern is designed as a model pattern for the next generation optical storage media. The pattern consists off types of embossed rectangular dot, which are 50nm, 100nm, 150nm and 200nm in length and 50nm in width. The height of the dot is designed to be 50nm. The pitch of the spiral track of the pattern is 100nm. A ER(Electron resist) master for this pattern is fabricated by e-beam lithography process. The ER is first spin-coated to be 50nm thick on a Si wafer and then the model pattern is written on the coated ER layer by e-beam. After developing this pattern written wafer in the solution, a ER pattern master is fabricated. The most conventional e-beam machine can write patterns in orthogonal way, so we made our own pattern generator which can write the pattern in circular or spiral way. This program generates the patterns to be compatible with the e-beam machine from Raith(Raith 150). To fabricate 50nm pattern master precisely, a series of experiments were done including the design compensation for the pattern size, optimization of the dose, acceleration voltage, aperture size and developing. Through these experiments, we conclude that the higher accelerating voltages and smaller aperture size are better for mastering the nano pattern which is in order of 50nm. With the optimized e-beam lithography process, a spiral arrayed 50nm pattern master adopting PMMA resist was fabricated to have dimensional accuracy over 95% compared to the designed. Using this pattern master, a metal pattern stamp will be fabricated by Ni electro plating for injection molding of the patterned plastic substrate.

High Speed Cu Filling Into TSV by Pulsed Current for 3 Dimensional Chip Stacking (3차원 실장용 TSV의 펄스전류 파형을 이용한 고속 Cu도금 충전)

  • Kim, In Rak;Park, Jun Kyu;Chu, Yong Cheol;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.667-673
    • /
    • 2010
  • Copper filling into TSV (through-silicon-via) and reduction of the filling time for the three dimensional chip stacking were investigated in this study. A Si wafer with straight vias - $30\;{\mu}m$ in diameter and $60\;{\mu}m$ in depth with $200\;{\mu}m$ pitch - where the vias were drilled by DRIE (Deep Reactive Ion Etching) process, was prepared as a substrate. $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. In order to reduce the time required complete the Cu filling into the TSV, the PPR (periodic pulse reverse) wave current was applied to the cathode of a Si chip during electroplating, and the PR (pulse-reverse) wave current was also applied for a comparison. The experimental results showed 100% filling rate into the TSV in one hour was achieved by the PPR electroplating process. At the interface between the Cu filling and Ti/ Au functional layers, no defect, such as a void, was found. Meanwhile, the electroplating by the PR current showed maximum 43% filling ratio into the TSV in an hour. The applied PPR wave form was confirmed to be effective to fill the TSV in a short time.

Chronological Concentration Change of Five Chemical Substances in Manufacturing Industry of Busan Area (부산지역 일부 제조업 산업장의 기중 5가지 화학물질의 경시적 농도 변화)

  • Park, Joon Jae;Sun, Byong Gwan;Son, Byung Chul;Moon, Deog Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.68-80
    • /
    • 2006
  • This study aimed to prepare the fundamental data and assess the status and trend of exposure level for 5 chemical substances such as sulfuric acid, hydrogen chloride, ammonia, formaldehyde and phenol in manufacturing industry by type of industry, working process, and size of factory, chronological change. Subjects related to this study consist of 146 factories, 12 industries and 17 working processes located in Busan area from Jan. 1997 to Dec. 2001. 1. All 5 kinds of chemical substances by type of industry, working process were generated in chemical manufacturing industry. There were founded in 8 types of industries and 13 types of working processes for ammonia, which is the highest number of in all 5 chemical substances. 2. In terms of the exposure level for 5 chemical substances by type of industry, working process, geometric mean concentration for sulfuric acid was $0.40mg/m^3$ in manufacture of chemicals and chemical products, $0.30mg/m^3$ in compounding process, for hydrogen chloride was 0.57 ppm in manufacture of basic metal, 0.48 ppm in dyeing process, for ammonia was 1.11 ppm in manufacture of rubber and plastic products, 0.94 ppm in buffing process, for formaldehyde was 0.49 ppm in manufacture of wood and of products of wood and cork, except furniture; manufacture of articles straw and plating materials, 0.53 ppm in mixing process, and for phenol were 0.53 ppm in manufacture of chemical and chemical products, 0.55 ppm in compounding process, respectively. Results for 5 chemical substances by type of industry and working process were significantly higher than those of the others(p<0.05). 3. The exposure level for hydrogen chloride, formaldehyde were significantly increased by size of industry (p<0.01). ammonia was significantly decreased by size of industry (p<0.01). 4. In trend of the concentration difference of five chemical substances by chronology, geometric mean concentration for sulfuric acid was significantly increased (p<0.01), hydrogen chloride and ammonia were significantly decreased by year (p<0.05) and for formaldehyde and phenol were decreased in chronological change. According to the above results 5 chemical substances were founded together in a way mixed in the same places one another and concentrations of chemical substances by industry, working process, size of industry and year appeared markedly. The authors recommend more systemic and effective work environmental management should be conducted in workplaces generating five chemical substances.

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • Park, Jae-Hyeong;Han, Dong-Seok;Mun, Dae-Yong;Yun, Don-Gyu;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

Corrosion Analysis of Materials by High Temperature and Zn Fume (고온 및 Zn Fume에 의한 소재들의 부식성 분석)

  • Baek, Min Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.551-556
    • /
    • 2018
  • The material normally used in hot dip galvanizing facilities is SM45C (carbon steel for mechanical structure, KS standard), mainly because of its price. During this process, the oxidation of the plating facility occurs due to the heat of the Zn fumes coming from the molten zinc. Since the cycle time of the current facilities is 6 months, much time and money are wasted. In this study, the corrosive properties of various materials (Inconel625, STS304, SM45C) were investigated by oxidation in a high temperature and Zn fumes environment. The possibility of applying the hot-dip galvanizing equipment was investigated for each material. The Zn fumes were generated by directly bubbling Ar gas into Zn molten metal in a 650 degree furnace. High-temperature, Zn fumes corrosion was conducted for 30 days. The sample was removed after 30 days and the oxidation of the surface was confirmed with EDS and SEM, and the corrosion properties were examined using potentiodynamic polarization tests.

A Study on the PEM Electrolysis Characteristics Using Ti Mesh Coated with Electrocatalysts (Ti Mesh 처리 촉매전극을 이용한 고체고분자 전해질 전기분해 특성연구)

  • Sim, Kyu-Sung;Kim, Youn-Soon;Kim, Jong-Won;Han, Sang-Do
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • Alkaline water electrolysis has been commercialized as the only large-scale method for a long time to produce hydrogen and the technology is superior to other methods such as photochemical, thermochemical water splitting, and thermal decomposition method in view of efficiency and related technical problem. However, such conventional electrolyzer do not have high electric efficiency and productivity to apply to large scale hydrogen production for energy or chemical feedstocks. Solid polymer electrolyte water electrolysis using a perfluorocation exchange membrane as an $H^+$ ion conductor is considered to be a promising method, because of capability for operating at high current densities and low cell voltages. So, this is a good technology for the storage of electricity generated by photovoltaic power plants, wind generators and other energy conversion systems. One of the most important R&D topics in electrolyser is how to minimize cell voltage and maximize current density in order to increase the productivity of the electrolyzer. A commercialized technology is the hot press method which the film type electrocatalyst is hot-pressed to soild polymer membrane in order to eliminate the contact resistance. Various technologies, electrocatalyst formed over Nafion membrane surface by means of nonelectrolytic plating process, porous sintered metal(titanium powder) or titanium mesh coated with electrocatalyst, have been studied for preparation of membrane-electrocatalyst composites. In this study some experiments have been conducted at a solid polymer electrolyte water electrolyzer, which consisted of single cell stack with an electrode area of $25cm^2$ in a unipolar arrangement using titanium mesh coated with electrocatalyst.

  • PDF