DOI QR코드

DOI QR Code

High Speed Cu Filling Into TSV by Pulsed Current for 3 Dimensional Chip Stacking

3차원 실장용 TSV의 펄스전류 파형을 이용한 고속 Cu도금 충전

  • 김인락 (서울시립대학교 신소재공학과) ;
  • 박준규 (서울시립대학교 신소재공학과) ;
  • 추용철 (덕산하이메탈) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Received : 2010.03.24
  • Published : 2010.07.22

Abstract

Copper filling into TSV (through-silicon-via) and reduction of the filling time for the three dimensional chip stacking were investigated in this study. A Si wafer with straight vias - $30\;{\mu}m$ in diameter and $60\;{\mu}m$ in depth with $200\;{\mu}m$ pitch - where the vias were drilled by DRIE (Deep Reactive Ion Etching) process, was prepared as a substrate. $SiO_2$, Ti and Au layers were coated as functional layers on the via wall. In order to reduce the time required complete the Cu filling into the TSV, the PPR (periodic pulse reverse) wave current was applied to the cathode of a Si chip during electroplating, and the PR (pulse-reverse) wave current was also applied for a comparison. The experimental results showed 100% filling rate into the TSV in one hour was achieved by the PPR electroplating process. At the interface between the Cu filling and Ti/ Au functional layers, no defect, such as a void, was found. Meanwhile, the electroplating by the PR current showed maximum 43% filling ratio into the TSV in an hour. The applied PPR wave form was confirmed to be effective to fill the TSV in a short time.

Keywords

References

  1. Y. K. Tsuiand and S. W. Ricky, IEEE Trans. Adv. Pack. 28, 413 (2004).
  2. Y. N. Kim, J. M. Koo, S. K. Park, and S. B. Jung, J. Kor. Inst. Met. & Mater 46, 33 (2008).
  3. M. Karnezos, Electron. Manufac. Tech. Sympo., 29th Int'l conf. IEEE/CPMT/SEMI, p.64, San Jose (2004).
  4. C. Y. Yin, M. O. Alam, Y. C. Chan, C. Bailey, and H. Lu, Microelectron. Reliabil. 43, 625 (2003). https://doi.org/10.1016/S0026-2714(02)00348-7
  5. L. J. Ladani, Microelectron. Eng. 87, 208 (2010). https://doi.org/10.1016/j.mee.2009.07.022
  6. X. Gagnard and T. Mourier, Microelectron. Eng. 87, 470 (2010). https://doi.org/10.1016/j.mee.2009.05.035
  7. J. C. Eloy, Market trends & Cost analysis for 3D ICs, http://www.yole.fr/ (2007).
  8. T. Luoh and C. T. Su, T. H. Yang, K. C. Chen, and C. Y. Lu, Microelectron. Eng. 85, 1739 (2008). https://doi.org/10.1016/j.mee.2008.04.030
  9. E. M. Chow, V. Chandrasekaran, T. Nishida, M. Sheplak, C. F. Quate, T. W. Kenny, and A. Partridge, J. Micro Electromechanical Sys. 11, 631 (2002). https://doi.org/10.1109/JMEMS.2002.805206
  10. T. Takizawa, S. Ymamoto, K. Otsubo, and A. Kawasaki, Proceed. 15th IEEE Intl Conf. on Micro Electro Mechanical Sys., p.338-391 IEEE, Las Vegas, (2002).
  11. J. Tower, M. Gostein, K. Otsubo, and A. Kawasaki, Mater. Res. Soc. Sympo. Proceed., p.421, San Francisco, (2003).
  12. F. Ji, S. Leppavuori, I. Luusua, K. Henttinen, S. Eranen, I. Hietanen, and M. Juntunen, Sensors and Actuators A 142, 405 (2008). https://doi.org/10.1016/j.sna.2007.02.030
  13. S. Yamamoto, K. Itoi, T. Suemasu, and T. Takizawa, Proceed. IEEE 16th Annual Intl Conf. on Micro Elctro Mechanical Systems, p.642, IEEE Kyoto (2003).
  14. T. Kobayashi, J. Kawasaki, K. Mihara, and H. Honma, Elctrochemica Acta 47, 85 (2001). https://doi.org/10.1016/S0013-4686(01)00592-8
  15. M. Lefebvre, G. Allardyce, M. Seita, H. Tsuchida, M. Kusaka, and S. Hayashi, Circuit World 29, 9 (2003). https://doi.org/10.1108/03056120310454943
  16. C. Lee, S. Tsuru, Y. Kanda, S. Ikeda, and M. Matsumura, J. Electrochemical Soc. 156, D543 (2009). https://doi.org/10.1149/1.3237139
  17. K. Y. K. Tsui, S. K. Yau V. C. K. Leung, P. Sun, and D. X. Q. Shi, Proceed. Intl Conf. on Electronic Pack. Tech. & High Density Pack. (ICEPT-HDP), p.23, IEEE, Beijing, (2009).
  18. A. Pohjoranta and R. Tenno, J. Electrochemical Soc. 154, D502 (2007). https://doi.org/10.1149/1.2761638
  19. J. S. Bae, G. H. Chang, and J. H. Lee, J. Microelectron. & Pack. Soc. 12, 129 (2005).
  20. K. Ishihara, C. F. Yung, A. A. Ayon, and M. A. Schmidt, J. Microelectromech. Sys. 8, 403 (1999). https://doi.org/10.1109/84.809054
  21. K. Takahashi, H. Terao, Y. Tomita, Y. Yamaji, M. Hoshino, T. Sato, T. Morifuji, M. Sunohara, and M. Bonkohara, Jpn J. Appl. Phys. 40, 3032 (2001). https://doi.org/10.1143/JJAP.40.3032
  22. H. H. Hsu, K. H. Lin, S. J. Lin, and J. W. Yeh, J. Electrochemical Soc. 148, C47 (2001). https://doi.org/10.1149/1.1344538
  23. B. S. Kang, S. M. Lee, J. S. Kwak, D. S. Yoon, and H. K. Baik, J. Electrochemical Soc. 144, 1807 (1997). https://doi.org/10.1149/1.1837684
  24. S. S. Wong, C. Ryu, H. Lee, A. L. S. Loke, K. W. Kwon, S. Bhattacharya, R. Eaton, R. Faust, B. Mikkola, J. Mucha, and J. Ormando, Proceed. Intl Interconnect Tech. Conf. p.107, San Francisco (1998).
  25. H. Hwang, S. M. Hong, J. P. Jung, and C. S. Kang, Solder. & Surf. Mount Tech. 15, 10 (2003). https://doi.org/10.1108/09540910310479486
  26. E. Webb, C. Witt, T. Andryuschenko, and J. Reid, J. Appl. Electrochemistry, 34, 291 (2004). https://doi.org/10.1023/B:JACH.0000015618.02583.f7
  27. M. J. Wolf, T. Dretschkow, B. Wunderle, N. Jrgensen, G. Engelmann, O. Ehrm, A. Uhlig, B. Michel, and H. Reichl, ECTC, May 2008, FL, USA (2008).