• Title/Summary/Keyword: Metabolism study

Search Result 3,781, Processing Time 0.038 seconds

Effects of a Pre-Exercise Meal on Plasma Growth Hormone Response and Fat Oxidation during Walking

  • Shin, Young-Ho;Jung, Hyun-Lyung;Ryu, Jong-Woo;Kim, Pan-Soo;Ha, Tae-Yeol;An, Ji-Yoon;Kang, Ho-Youl
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.175-180
    • /
    • 2013
  • The purpose of this study was to determine the effects of a pre-exercise meal on the plasma human growth hormone (hGH) response and fat oxidation during walking. Subjects (n=8) were randomly provided with either 1 g/kg body weight of glucose in 200 mL water (CHO) or 200 mL water alone (CON) 30 min prior to exercise and subsequently walked on a treadmill at 50% of VO2max for 60 min. Plasma hGH concentrations were significantly higher in subjects who received CHO compared to those who received CON at 15 and 30 min. The fat oxidation rate in the CHO was significantly lower than the CON while walking for 5~15, 25~35 and 45~55 min. Plasma FFA levels were also significantly lower in the CHO compared to the CON at 30, 45 and 60 min. Plasma glucose levels in the CHO were significantly lower while plasma insulin levels were significantly higher than in the CON at 15 and 30 min. Therefore, the results of this study suggest that the elevation of plasma hGH levels due to the intake of a pre-exercise meal may not be strongly related to fat oxidation and plasma free fatty acid (FFA) levels during low-intensity exercise.

The Effect of Jiaweizhengqi-tang on Motor Activity, Glucose Transport and Metabolism in Rat Small Intestine (가미정기탕(加味正氣湯)이 흰쥐 소장의 수송능과 글루코스 이동 및 대사에 미치는 영향)

  • Park, Gyu-Taek;Kim, Woo-Hwan;Moon, Sun-Young;Cho, Su-In
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.397-403
    • /
    • 2001
  • Objectives; This study was carried out to investigate the motor activity, glucose transport and metabolism of Jiaweizhengqi-tang(JKT) in rat small intestine. Methods ; The motor activity of the rat small intestine has been investigated by means of measuring barium sulfate passage degrees. Transport and metabolism of glucose were studied in everted sac of rat small intestine with incubation under several conditions. Results; Atropine treatment significantly delayed barium sulfate transit, and JKT pretreatment increased intestinal motor activity, but not significant. JKT administration showed renal toxicity in animal experiment, so clinical safety should settled to use commonly. The transport and metabolism of glucose were greater at jejunum than ileum. So, everted jejunum of rat were used to study the effect of JKT. When JKT were treated, the concentration of glucose were higher than untreated group. This result was thought to be influenced by the glucose in JKT. When 2, 4 dinitrophenol was treated, the transport and metabolism of glucose were decreased, but JKT treated together, the concentration of glucose in serosal solution increased. Conclusions; The transport and metabolism of glucose were influenced by the glucose in JKT. And the effects of JKT were still unidentified, but through continuous investigation, these effects of JKT should be identified.

  • PDF

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

Changes of Gangliosides Metabolism in Streptozotocin-Induced Diabetic Rats and Effect of Deer Antler (Streptozotocin 유발 당뇨병쥐 뇌에서 Gangliosides 대사 변화와 녹용의 효과)

  • 조현진;전길자
    • Biomolecules & Therapeutics
    • /
    • v.2 no.3
    • /
    • pp.223-228
    • /
    • 1994
  • In this study, we examined gangliosides from streptozotocin-induced diabetic rat brain. To obtain the diabetic rat brain, we sacrified the rat three days after injecting the streptozotocin into venus in tail. We measured blood glucose level according to Somogy-Nelson method and measured insulin level using $^{125}$ I-insulin RIA kit. The gangliosides were extracted according to Folch-Suzuki method from the rat brain. We also examined the effect of major lipid components extracted from deer antler on diabetic rat brain. The results showed that the major lipids components lowered both blood glucose and insulin level in normal rat. However only the blood glucose level in diabetic rat was lowered with major lipid components. In diabetic rat brain, gangliosides metabolism were changed. The amount of GMla was increased while GDla, GDlb, and GTlb were not synthesized. Furthermore, undefined ganglioside was found. In major lipid component-treated diabetic rat brain, the ganglioside metabolism proceeded as same as the normal rat. On the contrary, in bovine brain gangliosides-treated diabetic rat brain, the gangliosides metabolism was not recovered to normal one.

  • PDF

Effects of Magnesium Supplement Levels and Periods on Lipid Metabolism and Enzyme Activities in Rats (저단백식이와 마그네슘 결핍식이 섭취시 마그네슘 보충이 흰쥐의 지질대사 및 효소 활성에 미치는 영향)

  • 정복미
    • Journal of Nutrition and Health
    • /
    • v.26 no.8
    • /
    • pp.933-941
    • /
    • 1993
  • The present study was carried out to investigate the effects of magnesium supplement levels and periods on lipid metabolism in male Sprague-Dawley rats given low protein and magnesium deficient diets. The effect of magnesium supplement levels and periods on lipid metabolism in rats given a low protein and magnesium deficient diet for 2 weeks were investigated. Serum total lipid and triglyceride contents were significantly lower in magnesium supplement group compared with magnesium deficient group. Serum HDL-cholesterol/total cholesterol ratio was significantly increased as magnesium supplement level was increased. Liver total lipid, triglyceride, total cholesterol and phospholipid contents were significantly lower in magnesium supplement group than those in magnesium deficient group. Serum ALP, GOT and GPT activities were significantly decreased in magnesium supplement group compared with magnesium deficient group. In summary, the effect of magnesium supplement on lipid metabolism and enzyme activities were significant and we can see that magnesium supplement level propered to be requirement level(400 mg/kg diet)in the other cases except serum lipid contents.

  • PDF

Effects of Jerusalem Artichoke and Chicory on Lipid Metabolism in Rats (돼지감자 및 치커리 섭취가 흰쥐의 지질대사에 미치는 영향)

  • 이정선
    • Journal of Nutrition and Health
    • /
    • v.31 no.1
    • /
    • pp.13-20
    • /
    • 1998
  • This study was carried out to determine the effects of Jerusalem artichoke (JA) powder , JA extract and chicory extract on lipid metabolism in SD rats. The experimental groups were divided into 4 groups ; control, JA powder JA extract and chicory extract. The animals were fed ad libitum each of the experimental diets for 3 weeks. After 3 weeks, the wet weights of cecum were significantly increased in rats fed JA powder and chicory extract. Cecal contents were slightly increased in all experimental groups. Serum HDL-cholesterol, HDL-cholesterol/total cholesterol ratio and atherogenic index were significantly increased in the chicory extract group. Serum triglyceride, total cholesterol and LDL-cholesterol levels were not different among the diet groups. Although the feeding of chicory extract significantly lowered total lipid of liver, there was no difference in levels of triglyceride and total cholesterol. The content of fecal lipiid and cholesterol were significantly higher in the Ja extract and chicory extract group than other groups. Fecal bile acid was significantly increased in the chicory extract group. These results indicate that chicory extract is an effective regimen for improvement of lipid metabolism in SD rats.

  • PDF

Analysis of Flavonoid Components of Unripen Mandarin in Jeju Island and Change of Flavonoid Composition through Secondary Metabolism

  • Ho Bin Kim;Han Soo Kim;Moon Suk Choi;Jong Heon Kim;Min Sun Park;Mi Jung Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.105-105
    • /
    • 2022
  • Unripen mandarin in Jeju Island is known to contain functional ingredients including various flavonoids. This Study was carried out to identify the components of Unripen mandarin extracts and Secondary metabolism by enzyme treatment on Unripen mandarin. We extracted Unripen mandarin using optimal extraction method and selected the most optimal enzyme among commercial enzymes for a Secondary metabolism. As a result, flavonoid components such as Hesperidine and Narirutin, which are known to be contained a lot in unripen mandarin, could be analyzed. However In this extraction method there were no other flavonoid components such as Nobiletin, Tangeretin known to contain in unripen mandarin. However as a result of secondary metabolism a new functional component called Prunin which was not known to be contained in unripen mandarin, was detected as a secondary metabolic product due to enzyme treatment. Through this, it can be confirmed that it would be possible to develop high-value-added products by enzyme treatment on unripen mandarin.

  • PDF

Effects of ethanolic extract of Ulmus davidiana Root on Lipid Metabolism in High-Fat Diet Fed Mice (느릅나무 뿌리 에탄올 추출물이 고지방 식이를 섭취한 마우스의 지질대사에 미치는 영향)

  • Um, Min Young;Choi, Won Hee;Ahn, Jiyun;Ha, Tae Youl
    • The Korean Journal of Food And Nutrition
    • /
    • v.26 no.1
    • /
    • pp.8-14
    • /
    • 2013
  • This study was performed to investigate the effects of ethanolic extract of Ulmus davidiana root (UE) on lipid metabolism in mice fed a high-fat diet (HF) for 7 weeks. Forty male ICR mice were randomly divided into four groups; normal diet group (N), high-fat diet group (HF), HF with 0.5% UE (HF-L) and 1% UE (HF-H) group. Body weight, body weight gain, and liver weight in the HF group was significantly higher than in the N group, while those of the HF-L and HF-H group were unchanged. UE improved HF-induced dyslipidemia by reducing serum triglyceride, total cholesterol, and the atherogenic index. There was no difference in serum HDL-cholesterol among experimental groups. However, the HDL-cholesterol/total cholesterol ratio was significantly increased in the HF-L and HF-H group. Histological analysis showed that HF-fed mice developed hepatocellular microvesicular vacuolation as a result of fat accumulation. These changes were attenuated by 1% UE supplementation. In addition, hepatic triglyceride and cholesterol levels in the HF-H group significantly reduced. Taken together, these results demonstrated that lipid levels in the blood and liver were reduced by UE, suggesting that it might be beneficial for the prevention and treatment of hyperlipidemia and fatty liver.

In Vitro Metabolism of a New Neuroprotective Agent, KR-31543 in the Human Liver Microsomes : Identification of Human Cytochrome P450

  • Ji, Hye-Young;Lee, Seung-Seok;Yoo, Sung-Eun;Kim, Hosoon;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.239-245
    • /
    • 2004
  • KR-31543, (2S,3R,4S)-6-amino-4-[N-(4-chlorophenyl)-N-(2 -methyl-2H-tetrazol-5-ylmethyl) amino]-3,4-dihydro-2-dimethoxymethyl-3-hydroxy-2-methyl-2H-1-benzopyran, is a new neuroprotective agent for preventing ischemia-reperfusion damage. This study was performed to identify the metabolic pathway of KR-31543 in human liver microsomes and to characterize cytochrome P450 (CYP) enzymes that are involved in the metabolism of KR-31543. Human liver microsomal incubation of KR-31543 in the presence of NADPH resulted in the formation of two metabolites, M1 and M2. M1 was identified as N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine on the basis of LC/MS/MS analysis with a synthesized authentic standard, and M2 was suggested to be hydroxy-KR-31543. Correlation analysis between the known CYP enzyme activities and the rates of the formation of M 1 and M2 in the 12 human liver microsomes have showed significant correlations with testosterone 6$\beta$-hydroxylase activity (a marker of CYP3A4). Ketoconazole, a selective inhibitor of CYP3A4, and anti-CYP3A4 monoclonal antibodies potently inhibited both N-hydrolysis and hydroxylation of KR-31543 in human liver microsomes. These results provide evidence that CYP3A4 is the major isozyme responsible for the metabolism of KR-31543 to M1 and M2.

Review on Application of Biosystem Modeling: Introducing 3 Model-based Approaches in Studying Ca Metabolism

  • Lee, Wang-Hee;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.258-264
    • /
    • 2012
  • Purpose: This review aims at introducing 3 modeling approaches classified into 3 categories based on the purpose (estimation or prediction), structure (linear or non-linear) and phase (steady-state or dynamic-state); 1) statistical approaches, 2) kinetic modeling and 3) mechanistic modeling. We hope that this review can be a useful guide in the model-based approach of calcium metabolism as well as illustrates an application of engineering tools in studying biosystems. Background: The meaning of biosystems has been expanded, including agricultural/food system as well as biological systems like genes, cells and metabolisms. This expansion has required a useful tool for assessing the biosystems and modeling has arisen as a method that satisfies the current inquiry. To suit for the flow of the era, examining the system which is a little bit far from the traditional biosystems may be interesting issue, which can enlarge our insights and provide new ideas for prospective biosystem-researches. Herein, calcium metabolic models reviewed as an example of application of modeling approaches into the biosystems. Review: Calcium is an essential nutrient widely involved in animal and human metabolism including bone mineralization and signaling pathways. For this reason, the calcium metabolic system has been studied in various research fields of academia and industries. To study calcium metabolism, model-based system analyses have been utilized according to the purpose, subject characteristics, metabolic sites of interest, and experimental design. Either individual metabolic pathways or a whole homeostasis has been modeled in a number of studies.