Fig. 1. Location of the study site and monitoring station.
Fig. 2. Temporal variations of (a) air temperature, (b) Lake number, (c) Schmidt stability, and (d) time-depth profile of water temperature.
Fig. 3. Temporal variations of (a) wind speed, (b) photo-synthetically active radiation (PAR), and (c) DO deviations from saturation.
Fig. 4. Temporal variations of Net Ecosystem Production (NEP) according to metabolism model in Daechung Lake ((a): cole, (b): crusius, (c): vachon, (d): macIntyre).
Fig. 5. Estimate results of metabolism according to k.gas in Daechung Lake (co:cole, cr:crusius, he:heiskanen, ma:macIntyre, re:read, so:soloviev, va:vachon)
Table 1. Required input data and corresponding estimation functions used to calculate lake metabolism by LakeMetabolizer
Table 2. Comparisons of the structure of the 4 different metabolism models included in LakeMetabolizer
Table 3. Required time series and metadata inputs for each gas flux coefficient model
Table 4. Estimated Gross Primary Production (GPP) rates according to metabolism model in Daechung Lake
Table 5. Estimated Ecosystem Respiration (R) rates according to metabolism model in Daechung Lake
Table 6. Estimated Net Ecosystem Production (NEP) rates according to metabolism model in Daechung Lake
Table 7. Comparison of Gross Primary Production (GPP) rates estimated in this study with previous studies
References
- Cho, W. H., Yum, K. T., Kim, J. S., Ban, Y. J., and Chung, S. W. (2012). Study on algae occurrence in Daecheong reservoir, Environmental Impact Assessment, 21(3), 367-380.
- Choi, D. H., Choi, K. S., Hwang, G. S., Kim, D. S., Kim, S. W., and Kang, H. (2009). Primary production by epiphytic algae attached on the reed in constructed wetlands for water treatment, Korea, Journal of Korean Society of Environmental Engineers, 31(10), 893-900. [Korean Literature]
-
Chung, S. W., Yoo, J. S., Park, H. S., and Schladow, S. G. (2016). Estimation of
$CO_2$ emission from a eutrophic reservoir in temperate region, Journal of Korean Society on Water Environment Methods, 32(5), 433-441. [Korean Literature] - Cole, J., Nina, J., and Caraco F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF- 6, Limnology and Oceanography, 43, 647-656. [Korean Literature]
- Cole, J. J., Michael, L. P., Carpenter, S. R., and Kitchell, J. F. (2000). Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations, Limnology and Oceanography, 45(8), 1718-1730. https://doi.org/10.4319/lo.2000.45.8.1718
- Crusius, J. and Wanninkhof, R. (2003). Gas transfer velocities measured at low wind speed over a lake, American Society Limnology and Oceanography, 48(3), 1010-1017.
- Dugan, H. A., Woolway, R. I., Santoso, A. B., Corman, J. R., Jaimes, A., Nodie, E. R., Patil, V. P., Zwart, J. A., Bentrup, J. A., and Hetherington, A. L. (2016). Consequences of gas flux model choice on the interpretation of metabolic balance across 15 lakes, Inland Waters, 6, 581-592.
- Hanson, P. (2003). Metabolism in the surface waters of north temperature lakes, Ph.D. Dissertation, University of Wisconsin-Madison, USA.
- Hanson, P., Carpenter, S. R., Kimura, N., Wu, C., Cornelius, S. P., and Kratz, T. K. (2008). Evaluation of metabolism models for free-water dissolved oxygen methods in lakes, American Society of Limnology and Oceanography, 6, 454-465.
- Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter, Cambridge University Press.
- Heiskanen, J. J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T., Macintyre, S., and Ojala, A. (2014). Effects of cooling and internal wave motions on gas transfer coefficients in a boreal lake, Tellus Series B Chemical And Physical Meteorology, 66, 22827.
- Honti, M., Istvánovics, V., Staehr, P. A., Brighenti, L. S., Zhu, M., and Zhu, G. (2016). Robust estimation of lake metabolism by coupling high frequency dissolved oxygen and chlorophyll fluorescence data in a Bayesian framework, International Society of Limnology, 6, 608-621.
- Idso, S. B. (1973). On the concept of lake stability, Limnology and Oceanography, 18, 681-683.
- Imberger, J. and Patterson, J. C. (1990). Physical limnology, Advances in Applied Mechanics, 27, 303-475.
- Isles, P. D. F., Rizzo, D. M., Xu, Y., and Schroth, A. W. (2017). Modeling the drivers of interannual variability in cyanobacterial bloom severity using self-organizing maps and high-frequency data, Inland Waters, 7(3), 333-347. https://doi.org/10.1080/20442041.2017.1318640
- Kalman, R. E. (1960). A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82, 35-45.
- Khac, V. T., Hong, Y., Plec, D., Lemaire, B. J., Dubois, P., Saad, M., and Brigitte, V. L. (2018). An automatic monitoring system for high-frequency measuring and real-time management of cyanobacterial blooms in urban water bodies, An Open Access Journal of Processes, 6(11), 1-15.
-
Kho, E. H. (2016). Comparison of chlorophyll fluorescence method and
$^{14}C$ method to estimeate primary production in Korean waters, Department of Materials Science and Engineering College of Engineering Seoul National University. - Kim, S. J., Shin, M. S., Kim, J. K., Lee, J. Y., Jeong, K. J., Ahn, B. Y., and Kim, B. C. (2012). Oxygen fluctuation monitored with high frequency in a eutrophic urban stream and the effect of weather condition, The Korean Society of Limnology, 45(1), 34-41. [Korean Literature]
- Lombardo, C. P. and Gregg, M. C. (1989). Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer, Journal of Geophysical Research, 94, 6273-6284. [Korean Literature]
- MacIntyre, S., Jonsson, A., Jansson, M., Aberg, J., Turney, D. E., and Scott, D. M. (2010). Buoyancy flux, turbulence, and the gas transfer coefficient in a stratified lake, Geophysical Research Letters, 37(24), 1-5.
- Read, J. S., Hamilton, D. P., Jones, I. D., Muraoka, K., Winslow, L. A., Kroiss, R., Wu, C. H., and Gaiser, E. (2011). Derivation of lake mixing and stratification indices from high-resolution lake buoy data, Environmental Modelling & Software, 26, 1325-1339.
- Rose, K. C., Winslow, L. A., Read, J. S., Read, E. K., Solomon, C. T., Adrian, R., and Hanson, P. C. (2014). Improving the precison of lake ecosystem metabolism estimates by identifying predictors of model uncertainty, Limnology and Oceanography Methods, 12, 303-312. https://doi.org/10.4319/lom.2014.12.303
-
Soloviev, A., Donelan, M., Graber, H., Haus, B., Schlussel. P. (2007). An approach to estimation of near-surface turbulence and
$CO_2$ transfer velocity from remote sensing data, Journal of Marine Systems, 66, 182-194. - Staehr, P. A. and Kaj, S. J. (2007). Temporal dynamics and regulation of lake metabolism, Limnology and Oceanography Methods, 52(1), 108-120.
- Staehr, P. A., Bade, D., Van de Bogert, M. C., Koch, G. R., Williamson, C., Hanson, P., Cole, J. J., and Kratz, T. (2010). Lake metabolism and the diel oxygen technique: state of the science, Limnology and Oceanography Methods, Methods 8, 628-644.
- Vachon, D. and Prairie, Y. T. (2013). The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes, Canadian Journal of Fisheries and Aquatic Sciences, 70, 1757-1764.
- Winslow, L. a., Zwart, J. A., Batt, R. D., Dugan, H. A., Woolway, R. I., Corman, J. R., Hanson, P. C., and Read, J. S. (2016). Lake Metabolizer: an R package for estimating lake metabolism from free-water oxygen using diverse statistical models, International Society of Limnology, 6, 622-636.
- Yeongsan and Seomjin Watershed Management Committee (2006). Investigation of mechanisms and processes of eutrophication in the Youngsan and Sumjin river systems, Yeongsan and Seomjin Watershed Management Committee.
- Wetzel, R. G. (2001). Lake and River Ecosystems, Academic Press, Limnology, New York. ISBN 9780127447605. [Korean Literature]