• Title/Summary/Keyword: Mesh modeling

Search Result 357, Processing Time 0.022 seconds

Adaptive Subdivision for Geometry Coding of 3D Meshes (적응형 세분화를 이용한 3D 메쉬의 기하데이타 압축)

  • Lee Hae-Young
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.8
    • /
    • pp.547-553
    • /
    • 2006
  • We present a new geometry coding method for 3D meshes, an adaptive subdivision. Previous localized geometry coding methods have demonstrated better compression ratios than the global approach but they are considered hard to use in practice partly due to time - consuming quantization. Our new localized scheme replaces this quantization with an adaptive subdivision of the localized range. The deeper level a user chooses, the closer to the original the mesh will be restored. We also present an improved connectivity coder upon the current leading Angle-Analyzer's by applying a context-modeling. As a result, our new coder provides reliable and intuitive controls between bit-rate and distortion without losing efficiency.

Modeling and Analysis of Arbitrarily Shaped Three-Dimensional Cracks (임의 형태의 삼차원 균열 모델링 및 해석)

  • Park, Jai-Hak;Nikishkov, G.P.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1091-1097
    • /
    • 2011
  • The SGBEM-FEM alternating method has been known to be a very effective method for analyzing threedimensional cracks in a finite body. The accurate values of the stress intensity factor can be obtained for a general planar or nonplanar three-dimensional crack. In the existing method, eight-noded quadrilateral boundary elements are used to model a crack. In some cases, three-node triangle boundary elements are more convenient for the modeling of a crack with a general shape. In this study, a crack is modeled with three-noded triangular and seven-noded quadrilateral elements by using the advancing-front mesh generation method. The stress intensity factors are obtained for cracks with several shapes and the accuracy of results is examined.

Framework for Reconstructing 2D Data Imported from Mobile Devices into 3D Models

  • Shin, WooSung;Min, JaeEun;Han, WooRi;Kim, YoungSeop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.6-9
    • /
    • 2021
  • The 3D industry is drawing attention for its applications in various markets, including architecture, media, VR/AR, metaverse, imperial broadcast, and etc.. The current feature of the architecture we are introducing is to make 3D models more easily created and modified than conventional ones. Existing methods for generating 3D models mainly obtain values using specialized equipment such as RGB-D cameras and Lidar cameras, through which 3D models are constructed and used. This requires the purchase of equipment and allows the generated 3D model to be verified by the computer. However, our framework allows users to collect data in an easier and cheaper manner using cell phone cameras instead of specialized equipment, and uses 2D data to proceed with 3D modeling on the server and output it to cell phone application screens. This gives users a more accessible environment. In addition, in the 3D modeling process, object classification is attempted through deep learning without user intervention, and mesh and texture suitable for the object can be applied to obtain a lively 3D model. It also allows users to modify mesh and texture through requests, allowing them to obtain sophisticated 3D models.

A Study on a Finite Element Analysis Method Using Simplified Ball Models of Wind Turbine Ball Bearings (풍력발전기용 볼 베어링의 단순화 볼 모델을 이용한 해석기법 연구)

  • Seung-Woo Kim;Jung-Woo Song;Jun-Pyo Hong;Jong-Hoon Kang
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.21-28
    • /
    • 2023
  • This study focuses on the analysis of slewing ball bearings in wind turbines. Slewing bearings have an outer diameter of several meters, and hundreds of balls are in contact with the raceway. Due to the large number of balls and raceway contact conditions, it is difficult to accurately analyze contact stresses using general analysis techniques. To analyze the contact stress of a slewing ball bearing, the sub-modeling method is applied, which is a technique that first analyzes the displacement of the entire model and then analyzes the local stress at the point of maximum displacement. In order to reduce the displacement analysis time of the entire ball bearing, the technique of replacing the ball with a nonlinear spring is adopted. The analytical agreement of the simplified model was evaluated by comparing it with a solid mesh model of the ball for three models with different spring attachment methods. It was found that for the condition where a large turnover moment is applied to the bearing, increasing the number of spring elements gives the closest results to modeling the ball with a solid mesh.

Effect of geometry of underground structure and electrode on electrical resistance measurement: A numerical study

  • Tae-Young Kim;Hee-Hwan Ryu;Meiyan Kang;Suyoung Choi;Song-Hun Chong
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.105-113
    • /
    • 2024
  • Recently, electrical resistivity surveys have been used to obtain information related to underground structures including burial structure type and depth. However, various field conditions hinder understanding measured electrical resistance, and thus there is a need to understand how various geometries affect electrical resistance. This study explores the effect of geometric parameters of a structure and electrodes on electrical resistance in the framework of the finite element method. First, an electrical resistance module is developed using the generalized mesh modeling technique, and the accuracy of the module is verified by comparing the results with the analytical solution for a cylindrical electrode with conical tip. Then, 387 cases of numerical analysis including geometric parameters of a buried structure and electrodes are conducted to quantitatively estimate the detection depth under a steady-state current condition. The results show that electrical resistance is increased as (1) shallower burial depth of structure, (2) closer distance between ground electrode and structure, (3) longer horizontal electrode distance. In addition, the maximum detection depth corresponding to converged electrical resistance is deeper as (4) closer distance between ground electrode and structure, (5) shorter horizontal electrode distance. The distribution of the electric potential around the electrodes and underground structure is analyzed to provide a better understanding of the measured electrical resistance. As engineering purpose, the empirical equation is proposed to calculate maximum detection depth as first approximation.

On the Structural Analysis Using the Isogeometry Analysis Approach (등기하 해석법을 이용한 구조해석)

  • Lee, Joo-Sung;Chang, Kyoung-Sik;Roh, Myoung-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • In the present work, isogeometric analysis in linear elasticity problem is conducted using the basis functions from NURBS. The objectives of isogeometric analysis introduced is to integrate both geometric modeling(CAD) and computational analysis(CAE), and this can be accomplished from direct usage of geometric modeling by NURBS as the computational mesh. The merit of the isogeometry analysis is that NURBS surface are able to represent exact geometry from the control points and knot vectors, and also subsequent refinement is relatively simple relatively. In order to verify the computer codes developed in this study, it has been applied to two structural models of which geometry are simple ; 1) circular cylinder subjected to the constant internal pressure loading, 2) square plate with circular hole at center subjected to uniform tension. The exact solutions of these two models are available. Convergence of the approximate solutions by the present code for the isogeometry analysis are investigated by mesh refinement with inserting knots (h-refinement) and by mesh refinement with order elevation of the basis functions (p-refinement).

Validation of underwater explosion response analysis for airbag inflator using a fluid-structure interaction algorithm

  • Lee, Sang-Gab;Lee, Jae-Seok;Chung, Hyun;Na, Yangsup;Park, Kyung-Hoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.988-995
    • /
    • 2020
  • Air gun shock systems are commonly used as alternative explosion energy sources for underwater explosion (UNDEX) shock tests owing to their low cost and environmental impact. The airbag inflator of automotive airbag systems is also very useful to generate extremely rapid underwater gas release in labscale tests. To overcome the restrictions on the very small computational time step owing to the very fine fluid mesh around the nozzle hole in the explicit integration algorithm, and also the absence of a commercial solver and software for gas UNDEX of airbag inflator, an idealized airbag inflator and fluid mesh modeling technique was developed using nozzle holes of relatively large size and several small TNT charges instead of gas inside the airbag inflator. The objective of this study is to validate the results of an UNDEX response analysis of one and two idealized airbag inflators by comparison with the results of shock tests in a small water tank. This comparison was performed using the multi-material Arbitrary Lagrangian-Eulerian formulation and fluid-structure interaction algorithm. The number, size, vertical distance from the nozzle outlet, detonation velocity, and lighting times of small TNT charges were determined. Through mesh size convergence tests, the UNDEX response analysis and idealized airbag inflator modeling were validated.

3D Clothes Modeling of Virtual Human for Metaverse (메타버스를 위한 가상 휴먼의 3차원 의상 모델링)

  • Kim, Hyun Woo;Kim, Dong Eon;Kim, Yujin;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.638-653
    • /
    • 2022
  • In this paper, we propose the new method of creating 3D virtual-human reflecting the pattern of clothes worn by the person in the high-resolution whole body front image and the body shape data about the person. To get the pattern of clothes, we proceed Instance Segmentation and clothes parsing using Cascade Mask R-CNN. After, we use Pix2Pix to blur the boundaries and estimate the background color and can get UV-Map of 3D clothes mesh proceeding UV-Map base warping. Also, we get the body shape data using SMPL-X and deform the original clothes and body mesh. With UV-Map of clothes and deformed clothes and body mesh, user finally can see the animation of 3D virtual-human reflecting user's appearance by rendering with the state-of-the game engine, i.e. Unreal Engine.

Analysis of the Transmission Error of Spur Gears Depending on the Finite Element Analysis Condition (스퍼 기어의 유한요소해석 조건에 따른 전달 오차 경향성 분석)

  • Jaeseung Kim;Jonghyeon Sohn;Min-Geun Kim;Geunho Lee;Suchul Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.121-130
    • /
    • 2023
  • Finite element analysis is widely used to predict the structural stability and tooth contact performance of gears. This study focused on the effect of finite element modeling conditions of a spur gear on the simulation result and the model simplification. The gear body and teeth, teeth width, configuration of mesh, frictional coefficient, and simulation time interval (gear mesh cycle division) were selected for model simplification for gear analysis. The static transmission error during a single-gear mesh cycle was calculated to represent the performance of the gear, and the elapsed time was measured as a simplification factor. Contact stress distribution was also checked. The differences in maximum transmission error and elapsed time depending on the model simplification methods were analyzed. After all simplification methods were estimated, an optimal combination of the methods was defined, and the result was compared with that of the most detailed modeling methods.

Modelling of Structural Adhesives for Body Stiffness Analysis in Automobile (차체 강성해석을 위한 구조용 접착제 해석모델링 연구)

  • Seo, Seong-Hoon;Joo, Jae-Kap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1410-1414
    • /
    • 2007
  • In modern automobile body manufacturing, the structural adhesive bonding is recognized to one of new joining techniques for the purpose of light weight body and its application scope in the automobile body has been gradually magnified. Specially, the structural adhesives have the advantages of not only enhancing the design flexibility of automobile body, but also improving automobile performances such as stiffness, crashworthiness and durability. In order to evaluate the performance simulation of the automobile body applied with structural adhesives, it is necessary to develop modeling techniques in the structural adhesives in advance. This paper aims to investigate modeling methodology of structural adhesive junctions for body stiffness simulation. Two main modeling points are the element selection for adhesives and the connectivity between adhesives and adherends. Both of the 1D element used in classical modeling and the 3D element which are more accurate are considered for the adhesives, and the congruent and incongruent mesh models of the adherends are compared for connectivity modeling. By applying the several kinds of modeling methodology to the simple structures, the simulation results are compared and some modeling guidelines are obtained.

  • PDF